
What is it like to understand advanced

mathematics?

anonymous∗

You can answer many seemingly difficult questions quickly. But you
are not very impressed by what can look like magic, because you know
the trick. The trick is that your brain can quickly decide if question is an-
swerable by one of a few powerful general purpose “machines” (e.g., continuity
arguments, the correspondences between geometric and algebraic objects, linear
algebra, ways to reduce the infinite to the finite through various forms of com-
pactness) combined with specific facts you have learned about your area. The
number of fundamental ideas and techniques that people use to solve problems
is, perhaps surprisingly, pretty small – see here for a partial list, maintained by
Timothy Gowers.

You are often confident that something is true long before you have an
airtight proof for it (this happens especially often in geometry). The
main reason is that you have a large catalog of connections between concepts,
and you can quickly intuit that if X were to be false, that would create tensions
with other things you know to be true, so you are inclined to believe X is
probably true to maintain the harmony of the conceptual space. It’s not so
much that you can imagine the situation perfectly, but you can quickly imagine
many other things that are logically connected to it.

You are comfortable with feeling like you have no deep understanding
of the problem you are studying. Indeed, when you do have a deep under-
standing, you have solved the problem and it is time to do something else. This
makes the total time you spend in life reveling in your mastery of something
quite brief. One of the main skills of research scientists of any type is knowing
how to work comfortably and productively in a state of confusion. More on this
in the next few bullets.

Your intuitive thinking about a problem is productive and usefully
structured, wasting little time on being aimlessly puzzled. For exam-
ple, when answering a question about a high-dimensional space (e.g., whether
a certain kind of rotation of a five-dimensional object has a “fixed point” which

∗original article here

1

http://www.tricki.org/tricki/map
http://www.quora.com/Mathematics/What-is-it-like-to-understand-advanced-mathematics


does not move during the rotation), you do not spend much time straining to
visualize those things that do not have obvious analogues in two and three di-
mensions. (Violating this principle is a huge source of frustration for beginning
maths students who don’t know that they shouldn’t be straining to visualize
things for which they don’t seem to have the visualizing machinery.) Instead. . .

When trying to understand a new thing, you automatically focus on
very simple examples that are easy to think about, and then you
leverage intuition about the examples into more impressive insights.
For example, you might imagine two- and three-dimensional rotations that are
analogous to the one you really care about, and think about whether they clearly
do or don’t have the desired property. Then you think about what was important
to the examples and try to distill those ideas into symbols. Often, you see that
the key idea in the symbolic manipulations doesn’t depend on anything about
two or three dimensions, and you know how to answer your hard question.

As you get more mathematically advanced, the examples you consider easy
are actually complex insights built up from many easier examples; the “simple
case” you think about now took you two years to become comfortable with. But
at any given stage, you do not strain to obtain a magical illumination about
something intractable; you work to reduce it to the things that feel friendly.

To me, the biggest misconception that non-mathematicians have about how
mathematicians work is that there is some mysterious mental faculty that is
used to crack a research problem all at once. It’s true that sometimes you can
solve a problem by pattern-matching, where you see the standard tool that will
work; the first bullet above is about that phenomenon. This is nice, but not
fundamentally more impressive than other confluences of memory and intuition
that occur in normal life, as when you remember a trick to use for hanging a
picture frame or notice that you once saw a painting of the street you’re now
looking at.

In any case, by the time a problem gets to be a research problem, it’s almost
guaranteed that simple pattern matching won’t finish it. So in one’s professional
work, the process is piecemeal: you think a few moves ahead, trying out possible
attacks from your arsenal on simple examples relating to the problem, trying
to establish partial results, or looking to make analogies with other ideas you
understand. This is the same way that you solve difficult problems in your first
real maths courses in university and in competitions. What happens as you
get more advanced is simply that the arsenal grows larger, the thinking gets
somewhat faster due to practice, and you have more examples to try. Sometimes,
during this process, a sudden insight comes, but it would not be possible without
the painstaking groundwork (see here for more).

Indeed, most of the points here summarize feelings familiar to many serious
students of mathematics who are in the middle of their undergraduate careers;
as you learn more mathematics, these experiences apply to “bigger” things but
have the same fundamental flavor.
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You go up in abstraction, “higher and higher”. The main object of
study yesterday becomes just an example or a tiny part of what you
are considering today. For example, in calculus classes you think about
functions or curves. In functional analysis or algebraic geometry, you think of
spaces whose points are functions or curves – that is, you “zoom out” so that
every function is just a point in a space, surrounded by many other “nearby”
functions. Using this kind of zooming out technique, you can say very complex
things in short sentences – things that, if unpacked and said at the zoomed-in
level, would take up pages. Abstracting and compressing in this way makes
it possible to consider extremely complicated issues with one’s (very) limited
memory and processing power.

The particularly “abstract” or “technical” parts of many other sub-
jects seem quite accessible because they boil down to maths you al-
ready know. You generally feel confident about your ability to learn
most quantitative ideas and techniques. A theoretical physicist friend
likes to say, only partly in jest, that there should be books titled “ for
Mathematicians”, where is something generally believed to be difficult
(quantum chemistry, general relativity, securities pricing, formal epistemology).
Those books would be short and pithy, because many key concepts in those
subjects are ones that mathematicians are well equipped to understand. Of-
ten, those parts can be explained more briefly and elegantly than they usually
are if the explanation can assume a knowledge of maths and a facility with
abstraction.

Learning the domain-specific elements of a different field can still be hard –
for instance, physical intuition and economic intuition seem to rely on tricks of
the brain that are not learned through mathematical training alone. But the
quantitative and logical techniques you sharpen as a mathematician allow you
to take many shortcuts that make learning other fields easier, as long as you are
willing to be humble and modify those mathematical habits that are not useful
in the new field.

You move easily among multiple seemingly very different ways of rep-
resenting a problem. For example, most problems and concepts have more
algebraic representations (closer in spirit to an algorithm) and more geomet-
ric ones (closer in spirit to a picture). You go back and forth between them
naturally, using whichever one is more helpful at the moment.

Indeed, some of the most powerful ideas in mathematics (e.g., duality, Galois
theory, algebraic geometry) provide “dictionaries” for moving between “worlds”
in ways that, ex ante, are very surprising. For example, Galois theory allows
us to use our understanding of symmetries of shapes (e.g., rigid motions of
an octagon) to understand why you can solve any fourth-degree polynomial
equation in closed form, but not any fifth-degree polynomial equation. Once you
know these threads between different parts of the universe, you can use them
like wormholes to extricate yourself from a place where you would otherwise be
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stuck. The next two bullets expand on this.

Spoiled by the power of your best tools, you tend to shy away from
messy calculations or long, case-by-case arguments unless they are
absolutely unavoidable. Mathematicians develop a powerful attachment to
elegance and depth, which are in tension with, if not directly opposed to, me-
chanical calculation. Mathematicians will often spend days figuring out why a
result follows easily from some very deep and general pattern that is already
well-understood, rather than from a string of calculations. Indeed, you tend to
choose problems motivated by how likely it is that there will be some “clean”
insight in them, as opposed to a detailed but ultimately unenlightening proof by
exhaustively enumerating a bunch of possibilities. (Nevertheless, detailed cal-
culation of an example is often a crucial part of beginning to see what is really
going on in a problem; and, depending on the field, some calculation often plays
an essential role even in the best proof of a result.)

In A Mathematician’s Apology, the most poetic book I know on what it is
“like” to be a mathematician, G.H. Hardy wrote:

“In both [these example] theorems (and in the theorems, of course,
I include the proofs) there is a very high degree of unexpectedness,
combined with inevitability and economy. The arguments take so
odd and surprising a form; the weapons used seem so childishly sim-
ple when compared with the far-reaching results; but there is no
escape from the conclusions. There are no complications of detail
– one line of attack is enough in each case; and this is true too of
the proofs of many much more difficult theorems, the full apprecia-
tion of which demands quite a high degree of technical proficiency.
We do not want many ‘variations’ in the proof of a mathematical
theorem: ‘enumeration of cases’, indeed, is one of the duller forms
of mathematical argument. A mathematical proof should resemble
a simple and clear-cut constellation, not a scattered cluster in the
Milky Way.”

[. . . ]
“[A solution to a difficult chess problem] is quite genuine mathe-

matics, and has its merits; but it is just that ‘proof by enumeration
of cases’ (and of cases which do not, at bottom, differ at all pro-
foundly) which a real mathematician tends to despise.”

You develop a strong aesthetic preference for powerful and general
ideas that connect hundreds of difficult questions, as opposed to reso-
lutions of particular puzzles. Mathematicians don’t really care about “the
answer” to any particular question; even the most sought-after theorems, like
Fermat’s Last Theorem, are only tantalizing because their difficulty tells us that
we have to develop very good tools and understand very new things to have a
shot at proving them. It is what we get in the process, and not the answer per
se, that is the valuable thing. The accomplishment a mathematician seeks is
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finding a new dictionary or wormhole between different parts of the conceptual
universe. As a result, many mathematicians do not focus on deriving the prac-
tical or computational implications of their studies (which can be a drawback of
the hyper-abstract approach!); instead, they simply want to find the most pow-
erful and general connections. Timothy Gowers has some interesting comments
on this issue, and disagreements within the mathematical community about it
here.

Understanding something abstract or proving that something is true
becomes a task a lot like building something. You think: “First I will
lay this foundation, then I will build this framework using these familiar pieces,
but leave the walls to fill in later, then I will test the beams. . . .” All these steps
have mathematical analogues, and structuring things in a modular way allows
you to spend several days thinking about something you do not understand
without feeling lost or frustrated. (I should say, “without feeling unbearably
lost and frustrated”; some amount of these feelings is inevitable, but the key is
to reduce them to a tolerable degree.)

Andrew Wiles, who proved Fermat’s Last Theorem, used an “exploring”
metaphor here:

“Perhaps I can best describe my experience of doing mathematics in
terms of a journey through a dark unexplored mansion. You enter
the first room of the mansion and it’s completely dark. You stumble
around bumping into the furniture, but gradually you learn where
each piece of furniture is. Finally, after six months or so, you find
the light switch, you turn it on, and suddenly it’s all illuminated.
You can see exactly where you were. Then you move into the next
room and spend another six months in the dark. So each of these
breakthroughs, while sometimes they’re momentary, sometimes over
a period of a day or two, they are the culmination of – and couldn’t
exist without – the many months of stumbling around in the dark
that proceed them.”

In listening to a seminar or while reading a paper, you don’t get
stuck as much as you used to in youth because you are good at modu-
larizing a conceptual space, taking certain calculations or arguments you don’t
understand as “black boxes”, and considering their implications anyway. You
can sometimes make statements you know are true and have good intuition for,
without understanding all the details. You can often detect where the delicate
or interesting part of something is based on only a very high-level explanation.
(I first saw these phenomena highlighted by Ravi Vakil, who offers insightful
advice on being a mathematics student here.)

You are good at generating your own definitions and your own ques-
tions in thinking about some new kind of abstraction. One of the
things one learns fairly late in a typical mathematical education (often only at
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the stage of starting to do research) is how to make good, useful definitions.
Something I’ve reliably heard from people who know parts of mathematics well
but never went on to be professional mathematicians (i.e., write articles about
new mathematics for a living) is that they were good at proving difficult propo-
sitions that were stated in a textbook exercise, but would be lost if presented
with a mathematical structure and asked to find and prove some interesting
facts about it. Concretely, the ability to do this amounts to being good at
making definitions and, using the newly defined concepts, formulating precise
results that other mathematicians find intriguing or enlightening.

This kind of challenge is like being given a world and asked to find events in
it that come together to form a good detective story. You have to figure out who
the characters should be (the concepts and objects you define) and what the
interesting mystery might be. To do these things, you use analogies with other
detective stories (mathematical theories) that you know and a taste for what is
surprising or deep. How this process works is perhaps the most difficult aspect
of mathematical work to describe precisely but also the thing that I would guess
is the strongest thing that mathematicians have in common.

You are easily annoyed by imprecision in talking about the quantita-
tive or logical. This is mostly because you are trained to quickly think about
counterexamples that make an imprecise claim seem obviously false.

On the other hand, you are very comfortable with intentional impre-
cision or “hand-waving” in areas you know, because you know how
to fill in the details. Terence Tao is very eloquent about this here:

“[After learning to think rigorously, comes the] ‘post-rigorous’ stage,
in which one has grown comfortable with all the rigorous foundations
of one’s chosen field, and is now ready to revisit and refine one’s pre-
rigorous intuition on the subject, but this time with the intuition
solidly buttressed by rigorous theory. (For instance, in this stage
one would be able to quickly and accurately perform computations
in vector calculus by using analogies with scalar calculus, or informal
and semi-rigorous use of infinitesimals, big-O notation, and so forth,
and be able to convert all such calculations into a rigorous argument
whenever required.) The emphasis is now on applications, intuition,
and the ‘big picture’. This stage usually occupies the late graduate
years and beyond.”

In particular, an idea that took hours to understand correctly the first time
(”for any arbitrarily small epsilon I can find a small delta so that this statement
is true”) becomes such a basic element of your later thinking that you don’t
give it conscious thought.

Before wrapping up, it is worth mentioning that mathematicians are not
immune to the limitations faced by most others. They are not typically intel-
lectual superheroes. For instance, they often become resistant to new ideas and
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uncomfortable with ways of thinking (even about mathematics) that are not
their own. They can be defensive about intellectual turf, dismissive of others,
or petty in their disputes. Above, I have tried to summarize how the mathemat-
ical way of thinking feels and works at its best, without focusing on personality
flaws of mathematicians or on the politics of various mathematical fields. These
issues are worthy of their own long answers!

You are humble about your knowledge because you are aware of how
weak maths is, and you are comfortable with the fact that you can
say nothing intelligent about most problems. There are only very few
mathematical questions to which we have reasonably insightful answers. There
are even fewer questions, obviously, to which any given mathematician can give
a good answer. After two or three years of a standard university curriculum, a
good maths undergraduate can effortlessly write down hundreds of mathemat-
ical questions to which the very best mathematicians could not venture even a
tentative answer. (The theoretical computer scientist Richard Lipton lists some
examples of potentially “deep” ignorance here. This makes it more comfortable
to be stumped by most problems; a sense that you know roughly what ques-
tions are tractable and which are currently far beyond our abilities is humbling,
but also frees you from being very intimidated, because you do know you are
familiar with the most powerful apparatus we have for dealing with these kinds
of problems.
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