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Abstract

We consider quasi-free states of type I on On, the C*-algebras considered by Cuntz.

§ 1. Introduction

We consider some C*-algebras which were shown to be simple by Cuntz

in [5]. For separable Hilbert spaces H9 these algebras 0(H) are constructed

from full Fock space in a fashion similar to that for the CAR or CCR algebras

on anti-symmetric or symmetric Fock spaces respectively. Borrowing termi-

nology from those algebras, we define in Section 2 quasi-free automorphisms and

quasi-free states on O(H)9 and indicate how the work of [3, 11] fits into this

framework. The main aim of this paper is to initiate a study of quasi-free

states on 0(H), and in Section 2 we show how to construct primary and non-

primary type I states in this class.

Throughout, H will denote a separable Hilbert space with H^C, and K(H)

(respectively T(H), B(HJ) the compact (respectively trace class, bounded)
operators on H.

§2.
00

Let F(H) denote the full Fock space © (®rH), where ®°fiT is a one
r=0

dimensional Hilbert space spanned by a unit vector Q, the vacuum. Define a

linear map OF: H-+B(F(H)) by
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and

Then

and

where Q®& is the projection on the vacuum, and {/?J"=i is any complete ortho-

normal set in H. Let 0F(H) denote the C*-algebra generated by the range of

Op', which contains K(F(HJ) when H is finite dimensional. If H is infinite

dimensional, let 0(H) = 0F(H\ whilst if H is finite dimensional let O(H) = OF(H)/

K(F(Hy). Define a linear map O : H-^O(H) by O = OF when H is infinite dimen-

sional and 0 = n°0F when H is finite dimensional and where n is the natural

projection OF(H)-^0(H). Then 0(H} is a C*-algebra generated by the range

of a linear map 0 which satisfies

(2.1) 0(/)*0fe)

and

(2.2) i

for one, and hence all, complete orthonormal set {/zj"=i in ff, with equality in

(2.2) should H be finite dimensional. Then 0(H) is isomorphic to OM of [5],

where n is the dimension of H . Moreover by [5] O(H) is uniquely determined,

up to isomorphism, as the C*-algebra generated by the range of a (necessarily

bounded linear) map O on H satisfying (2.1) and (2.2).

Note that if P+ (respectively P_) is the projection on anti-symmetric (respec-

tively symmetric) Fock space, and a+(f) (respectively «_(/)) is the anti-sym-

metric (respectively symmetric) annihilation operator, which determine the

CAR (respectively CCR) C*-algebras, and N is the number operator on F(H)

then

=a$(f)9 feH.

If r e N, the map
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satisfies (2.1) on the algebraic tensor product ®rH. It thus extends to a map

of the completion, ®rF, into 0(H) such that (2.1) and (2.2) both hold. This

embeds 0(®rH) in O(H). The map /?®fc-»0(/7)0(A:)*; /?, fceJf/, gives an alge-

braic isomorphism of the finite rank operators on H into O(H). Hence using

the previous embedding of 0(®rH) in O(H), we can embed the compact opera-

tors on ®FH in 0(H).

Let K(H) denote the compact operators on H, and K(H) the C*-algebra

K(H) + Cl on H. Let &(E) denote the C*-subalgebra of ® £(Ji) generated

by K(®rH)®l, ^ = 0, !,-•• • Then JF(H) has been embedded in 0(H) ([5]).
It follows from the preceding uniqueness statement on O(H), that if 17 is a

unitary between Hilbert spaces H and K, there is a unique ""-isomorphism 0(17)

between O(H) and 0(X) such that O(V)O(f) = O(Uf),feH. If If is infinite

dimensional, then it is only necessary for 17 to be an isometry in which case 0(17)

is a *-homomorphism. The map 17 -> 0(17) is continuous for the strong topolo-

gies because \\O(f)\\ = \ \ f \ \ , f e H . We call such maps quasi-free. One par-

ticular quasi-free automorphism, induced by the unitary (zt, z2)->(z2, zx) on

C2, has been studied by Archbold [3] and shown to be outer on both 0(C2)

and ^(C2). His argument can easily be modified to show that if U is a unitary

on a finite dimensional Hilbert space H; l/Vl, then 0(C7) is outer on O(H).

(Moreover 0(17)|^(H) = ® Ad([7) and so is also clearly outer if U=£l . ) In

particular, the elements (0(0- teT, t^l} of the gauge group are outer, con-

firming suspicions raised by Remark 2.10 of [12] that the crossed product of

0(H) by the gauge group is simple. However let T2 act on C2 by (f 15 t2) - (zl9 z2)

= (1 !̂, t2z2), tteT, zt.eC. Then the crossed product of 0(C2) by T2 under
the induced quasi-free action is stably isomorphic by [10] to the fixed point

algebra, which is the GICAR algebra, and hence not simple. It would be inter-

esting to know exactly when the crossed product of 0(H) by a quasi-free action

is simple.

Let T±(H) denote the positive trace class operators K on H such that tr K = 1

if H is finite dimensional and tr K ^ 1 otherwise. If K e 7\(/f), let pK denote the

normalized state on K(H ) :

pK(x + M) = tT(Kx) + l, xeK(H), A e C .

If {Xj£a is a sequence in T^H), let p[X.-, denote the restriction of the product

state ® pK. on ®K(H) to ^(H). Let P denote the canonical projection of

O(H) on ^"(H), which is the fixed point algebra of O(H) under the gauge action.
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We let coiKd denote the state p^^-fP on O(H). Then for all fl9...9fr9 gl9..., gs

eH:

«[M [0(/i)-0(/r)0to.)* -0(g 0*] = A <X|/,, 0i><5,s •

We call such a state a quasi-free state on O(H). If moreover Kt is a constant
operator, K say, then we write COK for co[X<]. A state co on 0(H) such that a> =

a)°P is said to be gauge invariant.

Proposition 2.1. // H is infinite dimensional, COK is quasi-equivalent to

a)0 if and only iftrK<l.

Proof. Identify O(H) with its (irreducible) representation on Fock space.
Then the quasi-free state o}0 is given by

>, xeO(H)

where Q is the vacuum in F(H). Suppose that a>K is quasi-equivalent to G>O,
so that there exists a density operator p on F(H) such that COK(X) = tr (px) ; xe

00

). Since G}x is gauge invariant, there exist pr e T(®rH) such that p= © pr.
r=0

If Hl9 H2 are Hilbert spaces, and <p e T(H1®H2), let tr#2 (9) denote the unique
element of Tffl^ such that

for

For notational convenience, we write Ht=H9 / = !, 2,... and F(H)= © (®
r=0 i=l

Then straightforward computations show that for fl9"-, freH:

But

Hence

(2.4) ®'K=f tr j

Operating on this by trHr, we see

(2.5) (trK)®r-1X= f;-
j=r
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Hence comparing (2.4) with (2.5), we have pr = (l-tr K)®rK, so that tr K = l

would be absurd. Conversely, if tr K<1, then p = (l — tr X) © (®rK) defines
r=0

a density operator such that

coK(x) = tr(px), xeO(H).

The following Proposition is essentially due to [11], who discussed the gauge
group. This together with [9, Cor. 4.14] shows that if KeT^H) with K>0,

then COK is primary.

Proposition 2.2. Let {eiht: teR} be a strongly continuous one-parameter

unitary group on H. Then:

(a) There exists a KMS state for [0(eiht): teR} on 0(H) at a finite

inverse temperature ft if and only if K = e~fth e T^H). In which case the

KMS state is unique and is a>K.

(b) There exists a ground state for (0(eiht): teR} on 0(H} if and only if

/j^O, and Ker(/i)^0 when H is finite dimensional. In which case there

exists a unique gauge invariant ground state if and only if

(i) Ker(/i) = 0 if H is infinite dimensional,

(ii) Ker(fc) is one dimensional if H is finite dimensional.

Proof. Let oct = 0(eiht\ teR, and let ®(h) (respectively <f(/z)) denote the
domain (respectively entire vectors) of h.

(a) Suppose K = e~ph e T^H). Then it is easy to check using (2.1) and

(2.3) that o}K(xy) = o}K(ya^(x)} for all x, y in the *-algebra generated by {O(f):

fe £(h)}, which are clearly entire for aR. Hence CDK is KMS at inverse tem-

perature p. Conversely, suppose there exists a KMS state a> at inverse tem-

perature j8. There exists K e B(H)+ , such that oo(O(f)0(g)*) = <X/, #>, f,g<=H.

In fact K e T^H) by (2.2). If/, g E ff(h) then

Hence e~fth is bounded and is equal to K. We claim that the linear span of

{(eiht®-~®eiht-l)Y\: r\e®rH, teR} is dense in ®rH. If not, by looking at

the orthogonal complement, there exists a unit vector cp in ®I"H, such that

(g)reiht(p = (p. Hence ®rKcp = (p. Let \j/ be a unit vector orthogonal to (p;

then:
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Thus ®r K\l/ = Q, and so i/r = 0 which is absurd.

Since co is a, invariant, we have for/l5...,/,.e/f :

Hence

using the embedding of O(®rH) in 0(£f). Thus by the proven density,

(2.6) Q>[0to1)-0(flfr)] = 0, for all gl9...,greH.

Let /!,...,/,, gl9...,gse£(h). Then

by the KMS condition

by (2.1) and (2.6).

This means CO = CDK,

(b) Let 0} be a ground state for oct = edt. Then by [13]

(2.7) - ica(x*6(x)) ^ 0 , Vx e 0(<5) .

Putting x = O(f) for /e ^(ft) we see that A ;> 0. Conversely if h ̂  0, let p be the

projection on Ker (/?); formally p = e~cch. Let Kt be a sequence of operators in

T^H), Kt^p. Then for x, y in the *-algebra generated by {0(/):/e<f(/i)],

it is easy to check that t-*cQ[Ki-}(oit(x)y) has a bounded analytic extension to the

upper half-plane, and so co[Ki] is a ground state for af. Thus if there exists a

unique gauge invariant ground state Kt = p always and so (i, ii) hold. Con-

versely, suppose (i, ii) hold, and let co be a gauge invariant ground state. For

r;>0, let RreT!(®rH) be given by

Putting x = O(i//)*9 where \l/E®r@(h) in (2.7), we see Rrhr^Q, where eihrt =

®reiht. But ^,.^0, and so Rr^®r PI hence ^ r=® rp by (i, ii), and so co = cop.

Let e be a rank one projection on H, Let ,4 denote the infinite tensor pro-

duct of K(H) tailing off to 1 to the right and to e to the left [5, 6]. More pre-
r ~ !•+!«.,

cisely embed ®K(H) in "® ^(ff) by x-»e®x(g)l? and let A be the C*-sub-
-r -r-1
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r
algebra of the inductive limit of this sequence generated by K(®H), r = 0, 1,

— r
2,... . Let Z act on A induced by the shift $0 to the right. Then the crossed

product C*(A9 Z) is isomorphic to K®0(H) where K denotes the compact

operators on a separable infinite dimensional Hilbert space [5]. Let P0 denote

the canonical projection of C*(A, Z) on A. Let {K/}JLi be a sequence in Tj(If),

and let 0[Kf] denote the state on A obtained by taking the inductive limit of
-1 I-' r „

(® Pe)®(® Px-+1) (on ® K(H)) and restricting to A. We denote by (p[K]
-r i=0 ' -r

the state OlK.fP0 on C*(A, Z). With ^(H) embedded in A, being generated by

C®1"1 e)®K(® H)^K(® H) and if p is the identity of ^(H), then pC*04, Z)p
0 -r

~O(H) ([5]), and <p[Ki] | 0(fJ) is the quasi-free state o>[1Ci] of Section 2. Suppose

ff is finite dimensional and pt denotes the maximum eigenvalue of Kt. Let

QiEH®H satisfy pK.(x) = (x®lQi, Qty, xeB(H).

Theorem 3.1. Suppose

(3.D i(i
i = l

(3.2) L(l
i=l

Then (p^Ki^ 's 0;Pg I ^w* ??ot a factor state.

Proof. Let jK"f = c, and Qt =/®/if i < 0, where /is a unit vector in the range

of e. Let Hi = H®H, M~B(H)®1, ieZ, and M be the JTPFI fl(#f, M£, Qi9

ieZ) in the notation of [2], which is generated by the algebras 1®M^®1 on
00 CO

®QHiy where Q=® Qt. Because (3.2) holds, the shift to the right defines a
— 00 —00

unitary U on ®fl Ht which induces an automorphism, $ say, of M as a shift to

the right. Let n0 denote the representation of A on ®°H^ given by

ieZ

Then (TIO, 17) is a co variant representation of (A, Z, 00) on ®QHt such that

7i0(^4)" = M. Let (z, Pf) be the covariant representation of (M, Z, ^) on

for m e M, and PFis the shift to the left on 12(Z, ®QHt). If j e Z, let 8j denote

the Dirac delta function at j. Then if n denotes the vector 60®Q in 12(Z)®
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for a e A, regarding a®d^ as an element of L*(Z, A)^ C*(A, Z). Thus we can

identify the GNS decomposition of <p[X<] with the covariant representation

(z°7c0, W) of (A, Z, $0). In particular the von Neumann algebra generated

by C*G4, Z) in the state cp^.^ is that generated by {zn0(A), W}, which is the

crossed product of M by <P. By (3.1) and [1, 4] M is type I. Hence by [14]

the crossed product of M by 0 is isomorphic to M(x)L°°(T).

Suppose that Kt is a sequence of commuting rank one projections so that

(3.1) holds, then (3.2) cannot hold if the sequence is aperiodic. (A sequence

Kl,K2,... is said to be aperiodic ([5]) if for any N, KN9 KN + l,... is not periodic.)

This situation will be studied further in Theorem 3.4 with the aid of the follow-

ing lemma, which allows us to express K®0(H) as a transformation group

C*-algebra. Let G1 x G2 be the semidirect product of a locally compact group

Gl by another locally compact group G2 under the continuous action L We

omit proving the lemma in its greatest generality, it is enough for our purposes

to assume that Gl5 G2 are unimodular and /I leaves Haar measure on Gl invari-

ant. Let (^4, Gl x G2, oc) be a C*-dynamical system, and let a0 = a | Gl.

Lemma 3.2. In the above situation, there exists a natural action ft of G2

on the crossed product C*(A, Gj) such that

(3.3) C*G4, G! x G2) ̂  C*(C*(^, G,\ G2) .

Proof. Let C£0(G1? A) be the ^4-valued continuous functions on Gl9 with

compact support, with involution and multiplication given by :

(xy)(g)=\
J

for g eG l 5 x, y^C^0(Gl9 A), and equipped with the I^-norm. We write

^(92)(9i) = d219i92> 9iE&i' We can define an isometric action ft of G2 on

C10(G19A) by (P(g2)x)(g1) = ̂ (g2)x(g21g1g2),9iEGi' Then 0(g2) gives a
*-isomorphism of C*(A, Gj) because

9 102
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and

Gi

for x, yeCS0(G l9 A), ^eG,-. We can thus form C*(C*G4, Gt), G2)) contain-

ing C£(G2, CS0(Gl9 ^4)) as a dense *-subalgebra. We can define a map i from

this subalgebra into C£(Gj x G2, 4) by (i/) (0i02)=/(02)(0i)» ^eG^; which is

isometric since Haar measure on G! x G2 is the product of Haar measures on
A

Gi and G2, using the invariance of Haar measure on Gj under the action of G2.

In this way we see that (3.3) holds.

If 77 is finite, let Zn denote the group of integers mod n, and let Z act on the
00

restricted product £J Zn (equipped with the discrete topology) by a shift A to
— 00

00

the right. The semi-direct product (O Zn)xZ=Gn, say, is amenable and acts
-oo A

-1 00

on O %n
 x II %n (equipped with the product topology) as follows. If (x{) e

— oo 0
oo

O Zn, m e Z; we let ((x^), m) act on O %n
 x FI %M by first a translation m to the

— 00

right, followed by pointwise addition :

— 1 00 00

Now C*(LI Znxl\Zn9 U ZB) is isomorphic to A(C»), (which is defined at the
— oo 0 — oc

beginning of § 3) and the action of Z on C*(UZn x Y\Zn, UZn) given by Lemma

3.2 is the same as that of the shift $>0 on A(Cn). Hence by Lemma 3.2 we have

Let G^ denote the semi-direct product of O Z by a shift A to the right. Let
— 00

Z* denote the one-point compactification of the integers, and let G^ act on
00

PI Z* in a similar fashion to the action of Gn on IJZfI x J~|Zn. Z acts by a shift

to the right, and (gt) e LJZ by :
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i
with the convention n+oo = 00, n eZ. For i^O, we embed C(][TZ*) in

— i

C(n Z*) by an injection /->/ :
— 00

/(*-;, ..., x,) if x. = 0 , V / < - < ,
(/)(*,)?„ =

0 otherwise .

Let C^ denote the C*-subalgebra of C(fl Z*) generated by C0(fl Z) ( c C(fl Z*),
— oo — i — i

i = 0, 1, 2,...). Then Cx is invariant under the action of G^ on C(Yl Z*). Then

we see as before that C*(Cm9 U Z)^A, and K®Ox~C*(Cao, GJ. We sum-
— 00

marize this as :

Proposition 3.3.

K®On*C*(L[Znxf[Zn9 (IJZJxZ) if 2 £ n < o o ,
-oo 0 -oo A

JK®000^C*(C00, (LJZ)xZ).
-co A

Let Z00=Z; and {^: ieZJ be a sequence of orthogonal minimal projec-

tions on H with ^et = l, where e0 is the fixed projection e. For each (/', j)e

NxZn let /c£j- be a positive real number with £ /cf7- = 1 if n is finite, and ^ ktj ^ 1
j'eZn j

otherwise. Let Kt denote the operator X ktjej on H. If w< oo, let /^- denote
je^n

the probability measure on Zn given by /^(j) = /c0-. If 71 = 00, let ju; be the

probability measure on Z* given by ^i(j) = kij,j^co, and ^(oo) = l — X /q7-.
7

00 op 00

Let ^ denote the product measure fl /^i on H Zn (if TI< oo , otherwise on |"1 Z*),
— oo — oo —oo

where fa is the Dirac point measure at 0 if z<0. Let Q denote the canonical
-1 00

projection of K®O(H) on C0(O ZM x fl ZJ (if n < oo, otherwise on C^). Then
— oo 0

the state ii°Q is precisely the state (p[Xi-| on K®0(H).

Now let n< oo. If each^e {e0,..., en_l}ihen((e0)~l09 (K^o) corresponds

to a point x say of LJZ^x flZ,,, and /^ is the Dirac point measure at x. We

write G = Gn, and if y = (yi)-x e]JZwx I1ZW, let Gy denote the stabilizer at y,

i.e. Gy={^f E G: gy = y}. Then Gy is either trivial, {!}, or isomorphic to Z,

depending on whether the sequence yl9 y2,'- is aperiodic or not.

Theorem 3.4. JTI the above situation (p^K^ is always type I. Moreover

the following conditions are equivalent:

(O
(ii)
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(iii) The sequence JC t, K2,-" is aperiodic.

Proof. If yeUZnxY\Zn, let /v denote the character /->/()>) on

C0(ULZnxYlZn)9 so that ju = £x. Then from [8, Lemma 2.3] we can identify

the co variant representation (TT, t/) of (O^« x II ^«> G) arising in the GNS repre-

sentation (TT x M) of /i°2 as that induced on /2(G) from the covariant represen-

tation GU, 0 of 01 ZB x nSB, {!})• That is

for h,geG,<pe 12(G\ /e C0(LIZM x n^«)- Let G/GX denote the space of co-

sets {gGx: g G G} and let c: G/GX-*G be a cross section so that c(Gx) = l. Then

let (p(g)=c(gGx)9\l/(g) = (p(g)-lg,geG; so that g-^(<p(g)9\l/(g)) identifies G

with the cartesian product G/GX x Gx. Here, and in what follows, we use the

cross section to confuse G/GX with a subset of G, in order to simplify the no-

tation. Then

ft = © Xgx = © X<p(gW(g)x ~ © ( © Xax) •

Note that if a, a' G G/GA, with a ̂  a', then ax ^ a'x, so that if b G (n x u) (C*(U^»
xn^n» £„))', (where nxu is the representation of C*QJ Zw x O ̂  Gn) ob-

tained from (ru, w)), then b= ® ba where baeB(!2(Gx)). Let £a>m be the

canonical basis for 12(G/GX x Gx), a G G/GX, ?r? G Gx. Then

neGx

for some {b^n}neGx in /2(GJC), for each (a, m) G G/GX x Gx. Then for ft G G:

bu(h-l}5am = bdham = b5^ha)Hha)m

2Lr ^^/(ha)m,n^tp(ha)n

2L V\l/(ha)m,\l/(ha)nOhan 5
neG.v

and

Therefore, since b G u(G)', b$$$mj(ha)n = b*n for all a G G/G,, m, n G G,. Taking

ft = a~ ] , we have

bl
mn = b^n = b°mn say.
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Putting a = l, heGx, b°hmM = b^>ni i.e. (under the Fourier transform) b°e

L^CGJ, and b = 1®6°. Hence

(nxii)(C*(UZn*

and

(TC x ii) (C*(U ZnX

The theorem now follows from this. (It also follows from the above that if F
-1 00

is the set {a E G/GX: ax e O {0} x II^»} then the von Neumann algebra gener-

ated in the quasi-free state co[Xi] on O(H) is B(/2(F))®L°°(G;c).)

Remarks, (i) If x, x' E UZn x Y[Zn, then the states q>x = %xoQ, <px, = %X,*Q

are equivalent on K®O(Cn) if and only if x, x' lie on the same orbit under Gn

([7]) (see also [8]). Now consider the unitary u = \ , ~ on C2, and let et be

orthogonal projections in C2 such that u*e1u = e2. Let x be the point (O)!?^ in

IJZ2 x n^i (corresponding to (e^^) and x7 the point ((O)zJb, (1)?) (cor-

responding to ((ejij,, (^2)0")). Then clearly x, x' lie on different orbits under

G2 so that cpx, q>x> are inequivalent. Now A (see [5] and the beginning of this

section) is an inductive limit as y'-> — oo of a sequence Ajy each isomorphic to

jr(C2)=®B(C2)9 with embeddings x-»e®x of Aj in Ay_ , . Thus A can be

identified with K®^(C2) (which is a restriction of the identification of C*(A, Z)

with K®0(C2)), in such a way that the identity of A0^A corresponds to q®l

in K® ̂ (C2), where q is a minimal projection in K. This identifies <px on

C*(^4, Z) with the state pq®coei on K®O(H), and ^>x/ with pq®cDe2. Hence

a)ei, co£2 are inequivalent on O(H); but a>ei°O(u) = CDe2. Hence 0(u) is outer on

O(C2)(c.f. [3] and §2).

With the same unitary u as above, let /t, /2 be orthogonal non zero pro-

jections with u*fiu=fi. Let Kl9 K2--- be an aperiodic sequence, where Kte

{/u/z}- Then the quasi-free state CU[KI] is pure on O(H) and w[/c.]oO(w) =
co[Ki]. Hence O(w) is weakly inner in the GNS representation of a>[Xi] (c.f. [3]).

These remarks clearly generalize to O(C").

(ii) It is not necessary for a sequence Kl9 JC2,... in T^H) to be aperiodic

before co[Xi] becomes factorial, e.g. co1/ra is factorial of type III1/n if 2^

See also remarks before Proposition 2.2.
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