Please do the following problems and hand them in with the other problems due on March 9.

Problem 1: (4 points) Define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ by

$$
T\binom{x}{y}=\left(\begin{array}{c}
2 x-3 y \\
0 \\
4 y \\
x+y
\end{array}\right) .
$$

Prove that T is linear, and find the standard matrix for T.

Problem 2: (2 points) Define $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by

$$
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{x+y}{y z} .
$$

Prove that T is not linear.

Problem 3: (2 points) Prove that the set $\left\{\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\right\}$ is a linearly independent subset of \mathbb{R}^{3}.

Problem 4: (2 points) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Prove that $\operatorname{Ran} T$ is a subspace of \mathbb{R}^{m}.

