Please do the following problems and hand them in with the other problems due on March 9.

Problem 1: (4 points) Define $T : \mathbb{R}^2 \to \mathbb{R}^4$ by

$$T\left(\begin{smallmatrix} x\\y\end{smallmatrix}\right) = \left(\begin{smallmatrix} 2x-3y\\0\\4y\\x+y\end{smallmatrix}\right).$$

Prove that T is linear, and find the standard matrix for T.

Problem 2: (2 points) Define $T : \mathbb{R}^3 \to \mathbb{R}^2$ by

$$T\left(\begin{array}{c}x\\y\\z\end{array}\right) = \left(\begin{array}{c}x+y\\yz\end{array}\right).$$

Prove that T is not linear.

Problem 3: (2 points) Prove that the set $\left\{ \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\2\\3 \end{pmatrix} \right\}$ is a linearly independent subset of \mathbb{R}^3 .

Problem 4: (2 points) Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Prove that Ran T is a subspace of \mathbb{R}^m .