Important Theorems from Calculus

In statements of the following results, recall that if $a, b \in \mathbb{R}$ with $a<b$, then $[a, b]:=\{x \in \mathbb{R}: a \leq x \leq b\}$ and $(a, b):=\{x \in \mathbb{R}: a<x<b\}$.
(EVT) Extreme Value Theorem
If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then f is bounded on $[a, b]$ and f achieves both a maximum value on $[a, b]$ and a minimum value on $[a, b]$.
(IVT) Intermediate Value Theorem
If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, and z is a number between $f(a)$ and $f(b)$, then there exists $c \in[a, b]$ such that $f(c)=z$.
(MVT) Mean Value Theorem
If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, f is differentiable at every point in (a, b), then there exists a number $c \in[a, b]$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} .
$$

(FTC-V1) Fundamental Theorem of Calculus - Version I
If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then f is Riemann integrable and

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

(FTC-V2) Fundamental Theorem of Calculus - Version II
If $f:[a, b] \rightarrow \mathbb{R}$ is differentiable and its derivative $f^{\prime}:[a, b] \rightarrow \mathbb{R}$ is continuous, then f^{\prime} is Riemann integrable and

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a) .
$$

In addition, the following useful facts are consequences of these theorems:
Fact 1: If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $f^{\prime}(x)=0$ for all x in $[a, b]$, then f is constant on $[a, b]$.

Fact 2: If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $f^{\prime}(x)>0$ for all x in $[a, b]$, then f is strictly increasing on $[a, b]$.

Fact 3: If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and f is injective on $[a, b]$, then f is either strictly increasing or strictly decreasing on $[a, b]$.

Definition of a Field

If S is a set, a binary operation is a function from $S \times S$ to S. In other words, a binary operation takes a pair of elements from S as input and assigns another element of S as an output. We usually use arithmetic operations, such as + or •, for a binary operation. We write $a+b$ for the value that + assigns to the pair (a, b), and we write $a \cdot b$ for the value. assigns to the pair (a, b).

A field is a set \mathbb{F} together with two binary operations + and \cdot satisfying the following axioms:
(1) (Associativity of +) For all $a, b, c \in \mathbb{F}$, we have $(a+b)+c=a+(b+c)$.
(2) (Existence of Additive Identity) There exists an element $0 \in \mathbb{F}$ such that $0+a=a$ for all $a \in \mathbb{F}$.
(3) (Existence of Additive Inverses) For all $a \in \mathbb{F}$ there exists $-a \in \mathbb{F}$ such that $a+(-a)=0$.
(4) (Commutativity of +) For all $a, b \in \mathbb{F}$, we have $a+b=b+a$.
(5) (Associativity of \cdot) For all $a, b, c \in \mathbb{F}$, we have $(a \cdot b) \cdot c=a \cdot(b \cdot c)$
(6) (Existence of Multiplicative Identity) There exists an element $1 \in$ $\mathbb{F} \backslash\{0\}$ such that $1 \cdot a=a$ for all $a \in \mathbb{F}$.
(7) (Existence of Multiplicative Inverses) For all $a \in \mathbb{F} \backslash\{0\}$ there exists $a^{-1} \in \mathbb{F}$ such that $a \cdot a^{-1}=1$.
(8) (Commutativity of \cdot) For all $a, b \in \mathbb{F}$, we have $a \cdot b=b \cdot a$.
(9) (Distributivity of Multiplication over Addition) For all $a, b, c \in \mathbb{F}$, we have $a \cdot(b+c)=(a \cdot b)+(a \cdot c)$.

