Important Theorems from Calculus

In statements of the following results, recall that if $a, b \in \mathbb{R}$ with a < b, then $[a, b] := \{x \in \mathbb{R} : a \le x \le b\}$ and $(a, b) := \{x \in \mathbb{R} : a < x < b\}.$

(EVT) Extreme Value Theorem

If $f : [a, b] \to \mathbb{R}$ is continuous, then f is bounded on [a, b] and f achieves both a maximum value on [a, b] and a minimum value on [a, b].

(IVT) Intermediate Value Theorem

If $f : [a, b] \to \mathbb{R}$ is continuous, and z is a number between f(a) and f(b), then there exists $c \in [a, b]$ such that f(c) = z.

(MVT) Mean Value Theorem

If $f : [a, b] \to \mathbb{R}$ is continuous, f is differentiable at every point in (a, b), then there exists a number $c \in [a, b]$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

(FTC-V1) Fundamental Theorem of Calculus — Version I

If $f:[a,b] \to \mathbb{R}$ is continuous, then f is Riemann integrable and

$$\frac{d}{dx}\int_{a}^{x}f(t)\,dt = f(x).$$

(FTC-V2) Fundamental Theorem of Calculus — Version II If $f : [a, b] \to \mathbb{R}$ is differentiable and its derivative $f' : [a, b] \to \mathbb{R}$ is continuous, then f' is Riemann integrable and

$$\int_a^b f'(x) \, dx = f(b) - f(a).$$

In addition, the following useful facts are consequences of these theorems:

Fact 1: If $f : \mathbb{R} \to \mathbb{R}$ is differentiable and f'(x) = 0 for all x in [a, b], then f is constant on [a, b].

Fact 2: If $f : \mathbb{R} \to \mathbb{R}$ is differentiable and f'(x) > 0 for all x in [a, b], then f is strictly increasing on [a, b].

Fact 3: If $f : \mathbb{R} \to \mathbb{R}$ is continuous and f is injective on [a, b], then f is either strictly increasing or strictly decreasing on [a, b].

Definition of a Field

If S is a set, a binary operation is a function from $S \times S$ to S. In other words, a binary operation takes a pair of elements from S as input and assigns another element of S as an output. We usually use arithmetic operations, such as + or \cdot , for a binary operation. We write a + b for the value that + assigns to the pair (a, b), and we write $a \cdot b$ for the value \cdot assigns to the pair (a, b).

A *field* is a set \mathbb{F} together with two binary operations + and \cdot satisfying the following axioms:

- (1) (Associativity of +) For all $a, b, c \in \mathbb{F}$, we have (a+b)+c = a+(b+c).
- (2) (Existence of Additive Identity) There exists an element $0 \in \mathbb{F}$ such that 0 + a = a for all $a \in \mathbb{F}$.
- (3) (Existence of Additive Inverses) For all $a \in \mathbb{F}$ there exists $-a \in \mathbb{F}$ such that a + (-a) = 0.
- (4) (Commutativity of +) For all $a, b \in \mathbb{F}$, we have a + b = b + a.
- (5) (Associativity of \cdot) For all $a, b, c \in \mathbb{F}$, we have $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- (6) (Existence of Multiplicative Identity) There exists an element $1 \in \mathbb{F} \setminus \{0\}$ such that $1 \cdot a = a$ for all $a \in \mathbb{F}$.
- (7) (Existence of Multiplicative Inverses) For all $a \in \mathbb{F} \setminus \{0\}$ there exists $a^{-1} \in \mathbb{F}$ such that $a \cdot a^{-1} = 1$.
- (8) (Commutativity of \cdot) For all $a, b \in \mathbb{F}$, we have $a \cdot b = b \cdot a$.
- (9) (Distributivity of Multiplication over Addition) For all $a, b, c \in \mathbb{F}$, we have $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$.