Talk 1: An Introduction to Graph C^* -algebras

Mark Tomforde

University of Houston, USA

July, 2010

∃ ▶ ...

Some Terminology

A graph $E = (E^0, E^1, r, s)$ consists of a countable set E^0 of vertices, a countable set E^1 of edges, and maps $r, s : E^1 \to E^0$ identifying the range and source of each edge.

A path $e_1 \ldots e_n$ is a sequence of edges with $r(e_i) = s(e_{i+1})$. A cycle is a path with $r(e_n) = s(e_1)$, and we call $s(e_1)$ the base point of this cycle.

A sink is a vertex that emits no edges; i.e., $s^{-1}(v) = \emptyset$. We write E_{sinks}^0 for the set of sinks.

An *infinite emitter* is a vertex that emits an infinite number of edges; i.e., $s^{-1}(v)$ is infinite. We write E_{inf}^{0} for the set of infinite emitters.

A regular vertex is a vertex that emits a finite and nonzero number of edges; i.e., $0 < |s^{-1}(v)| < \infty$. We write E_{reg}^0 for the set of regular vertices.

We say a graph is *row-finite* if the graph has no infinite emitters.

Definition

If $E = (E^0, E^1, r, s)$ is a directed graph consisting of a countable set of vertices E^0 , a countable set of edges E^1 , and maps $r, s : E^1 \to E^0$ identifying the range and source of each edge, then $C^*(E)$ is defined to be the universal C^* -algebra generated by mutually orthogonal projections $\{p_v : v \in E^0\}$ and partial isometries $\{s_e : e \in E^1\}$ with mutually orthogonal ranges that satisfy

•
$$s_e^* s_e = p_{r(e)}$$
 for all $e \in E^1$

• $p_v = \sum_{s(e)=v} s_e s_e^*$ when $0 < |s^{-1}(v)| < \infty$

• $s_e s_e^* \le p_{s(e)}$ for all $e \in E^1$.

NOTE: At the beginning we'll restrict to the row-finite case.

NOTE: For row-finite graphs, $(2) \implies (3)$.

(1) Not only does the graph summarize the relations that the generators satisfy, but also the C^* -algebraic properties of $C^*(E)$ are encoded in the graph E.

(2) Also, graph C^* -algebras are fairly tractable. Their structure can be deduced and their invariants can be computed.

(3) Graph C^* -algebras include many C^* -algebras.

Up to isomorphism, graph C^* -algebras include:

- All Cuntz algebras and all Cuntz-Krieger algebras
- All finite-dimensional C*-algebras
- $C(\mathbb{T})$, $\mathcal{K}(H)$, $M_n(C(\mathbb{T}))$, \mathcal{T} , and certain quantum algebras

Up to Morita Equivalence, graph C^* -algebras include:

- All AF-algebras
- All Kirchberg algebras with free K₁-group

イロト 不得 とうせい かほとう ほ

THE STANDARD GAUGE ACTION

By the universal property of $C^*(E)$, there exists an action $\gamma : \mathbb{T} \to \operatorname{Aut} C^*(E)$ with

$$\gamma_z(s_e) = zs_e$$
 and $\gamma_z(p_v) = p_v$

for all $e \in E^1$ and $v \in E^0$.

We say an ideal $I \triangleleft C^*(E)$ is gauge invariant if $\gamma_z(I) \subseteq I$ for all $z \in \mathbb{T}$.

Two technical theorems:

Theorem (Gauge-Invariant Uniqueness)

Let E be a directed graph and let $\rho : C^*(E) \to B$ be a *-homomorphism between C*-algebras. Also let γ denote the standard gauge action on $C^*(E)$. If there exists an action $\beta : \mathbb{T} \to \operatorname{Aut} B$ such that $\beta_z \circ \rho = \rho \circ \gamma_z$ for each $z \in \mathbb{T}$, and if $\rho(p_v) \neq 0$ for all $v \in E^0$, then ρ is injective.

Definition: An *exit* for a cycle $e_1 \dots e_n$ is an edge f with $s(f) = s(e_i)$ but $f \neq e_i$ for some i.

Condition (L): Every cycle has an exit.

Theorem (Cuntz-Krieger Uniqueness)

Let E be a directed graph satisfying Condition (L) and let $\rho : C^*(E) \to B$ be a *-homomorphism between C*-algebras. If $\rho(p_v) \neq 0$ for all $v \in E^0$, then ρ is injective. Let $E = (E^0, E^1, r, s)$ be a graph. A subset $H \subseteq E^0$ is *hereditary* if for any $e \in E^1$ we have $s(e) \in H$ implies $r(e) \in H$. A hereditary subset $H \subseteq E^0$ is said to be *saturated* if whenever $v \in E^0$ is a regular vertex with $\{r(e) : e \in E^1 \text{ and } s(e) = v\} \subseteq H$, then $v \in H$.

If $H \subseteq E^0$ is a hereditary set, the saturation of H is the smallest saturated subset \overline{H} of E^0 containing H.

Let $E = (E^0, E^1, r, s)$ be row-finite.

 $I_H := ideal in C^*(E)$ generated by $\{p_v : v \in H\}$

- (a) $H \mapsto I_H$ is an isomorphism from the lattice of saturated hereditary subsets of E onto the lattice of gauge-invariant ideals of $C^*(E)$.)
- (b) If H is saturated hereditary, and we let $E \setminus H$ be the subgraph of E whose vertices are $E^0 \setminus H$ and whose edges are $E^1 \setminus r^{-1}(H)$, then $C^*(E)/I_H$ is isomorphic to $C^*(E \setminus H)$.
- (c) If X is any hereditary subset of E^0 , then $I_X = I_{\overline{X}}$. If we let E_X denote the subgraph of E with vertices X and edges $s^{-1}(X)$, then $C^*(E_X)$ is isomorphic to the subalgebra

$$C^*(\{s_e, p_v : e \in s^{-1}(X) \text{ and } v \in X\}),$$

and this subalgebra is a full corner of the ideal I_X .

Let E be the graph

(日)

Then the saturated hereditary subsets of E are

Mark Tomforde	(University c	of Houston
---------------	---------------	------------

=

< ∃ ►

and gauge-invariant ideals of $C^*(E)$ are

<ロ> (日) (日) (日) (日) (日)

Note: For surjectivity of $H \mapsto I_H$, we need to apply the GIUT to $E \setminus H$. If $E \setminus H$ satisfies Condition (L) for all H, then we could instead use the CKUT and show all ideals are gauge-invariant.

Definition

A simple cycle in a graph E is a cycle $\alpha = \alpha_1 \dots \alpha_n$ with the property that $s(\alpha_i) \neq s(\alpha_1)$ for $i \in \{2, 3, \dots, n\}$.

Condition (K): No vertex in E is the base point of exactly one simple cycle; that is, every vertex in E is either the base point of no cycles or of more than one simple cycle.

The above graph satisfies Condition (K). Note: Condition (K) implies Condition (L).

If E is a graph, then E satisfies Condition (K) if and only if for every saturated hereditary subset H of E^0 the subgraph $E \setminus H$ satisfies Condition (L).

Theorem

A graph E satisfies Condition (K) if and only if all ideals of $C^*(E)$ are gauge invariant.

(Note: In the earlier example we considered, the lattice of gauge-invariant ideals that we described consists of *all* the ideals.)

< 日 > < 同 > < 三 > < 三 >

SIMPLICITY

Definition

For $v, w \in E^0$ we write $v \ge w$ if there exists a path $\alpha \in E^*$ with $s(\alpha) = v$ and $r(\alpha) = w$. In this case we say that v can reach w.

Definition

We say that a graph *E* is *cofinal* if for every $v \in E^0$ and every infinite path $\alpha \in E^{\infty}$, there exists $i \in \mathbb{N}$ for which $v \ge s(\alpha_i)$.

Let E be a row-finite graph with no sinks. Then $C^*(E)$ is simple if and only if E satisfies Condition (L) and E is cofinal.

< **∃** ► <

A C^* -algebra is an *AF*-algebra (AF stands for approximately finite-dimensional) if it can be written as the closure of the increasing union of finite-dimensional C^* -algebras; or, equivalently, if it is the direct limit of a sequence of finite-dimensional C^* -algebras.

Theorem

(Kumjian, Pask, Raeburn) If E is a row-finite graph, then $C^*(E)$ is AF if and only if E has no cycles.

A simple C^* -algebra A is *purely infinite* if every nonzero hereditary subalgebra of A contains an infinite projection. (The definition of purely infinite for non-simple C^* -algebra is more complicated.)

Theorem

(Kumjian, Pask, and Raeburn) If E is a row-finite graph, then every nonzero hereditary subalgebra of $C^*(E)$ contains an infinite projection if and only if E satisfies Condition (L) and every vertex in E connects to a cycle.

THE DICHOTOMY

Theorem (The Dichotomy for Simple Graph Algebras)
Let E be a row-finite graph. If C*(E) is simple, then either
C*(E) is an AF-algebra if E contains no cycles; or
C*(E) is purely infinite if E contains a cycle.

NON-ROW-FINITE GRAPHS

Up until now all of our graphs have been row-finite. How do we deal with arbitrary graphs?

We will use the notation

$$v \xrightarrow{(\infty)} w$$

to indicate that there are a countably infinite number of edges from v to w.

In order to *desingularize* graphs, we will need to remove sinks and infinite emitters.

Definition

If *E* is a graph and v_0 is a sink in *E*, then by *adding a tail at* v_0 we mean attaching a graph of the form

to E at v_0 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

Definition

If *E* is a graph and v_0 is an infinite emitter in *E*, then by *adding a tail at* v_0 we mean performing the following process: We first list the edges g_1, g_2, g_3, \ldots of $s^{-1}(v_0)$. Then we add a graph of the form

$$V_0 \xrightarrow{e_1} V_1 \xrightarrow{e_2} V_2 \xrightarrow{e_3} V_3 \xrightarrow{e_4} \cdots$$

to *E* at v_0 , remove the edges in $s^{-1}(v_0)$, and for every $g_j \in s^{-1}(v_0)$ we draw an edge f_j from v_{j-1} to $r(g_j)$.

Note: Desingularization is not unique.

Here is an example of a graph E and a desingularization F of E.

Suppose E is the following graph:

Label the edges from v_0 to z_0 as $\{g_4, g_5, g_6, \ldots\}$. Then a desingularization of E is given by the following graph F.

Mark Tomforde (University of Houston)

Graph C^* -algebras

If E is the \mathcal{O}_{∞} graph shown here

 (∞)

then a desingularization is given by:

Let E be a graph. If F is a desingularization of E and p_{E^0} is the projection in $M(C^*(F))$ defined by $p_{E^0} := \sum_{v \in E^0} p_v$, then $C^*(E)$ is isomorphic to the corner $p_{E^0}C^*(F)p_{E^0}$, and this corner is full.

The advantage of the process of desingularization is that it is very concrete, and it allows us to use the row-finite graph F to see how the properties of $C^*(E)$ are reflected in the graph E. We will see examples of this in the following, as we show how to extend results for C^* -algebras of row-finite graphs to general graph algebras.

イロト イポト イヨト イヨト 二日

Let E be a graph. The graph algebra $C^*(E)$ is an AF-algebra if and only if E has no cycles.

Proof.

Let F be a desingularization of E. Then

$$C^*(E)$$
 is AF $\iff C^*(F)$ is AF
 $\iff F$ has no cycles
 $\iff E$ has no cycles

Image: A (1)

Let E be a graph. If E satisfies Condition (L) and every vertex in E connects to a cycle in E, then there exists an infinite projection in every nonzero hereditary subalgebra of $C^*(E)$.

Proof.

Let F be a desingularization of E. Then

E satisfies Condition (L) and every vertexin *E* connects to a cycle $\implies F \text{ satisfies Condition (L) and every vertex}$ in *F* connects to a cycle $\implies \text{there is an infinite projection in every}$ nonzero hereditary subalgebra of $C^*(F)$ $\implies \text{there is an infinite projection in every}$ nonzero hereditary subalgebra of $C^*(E)$.

If E is a graph, then $C^*(E)$ is simple if and only if E has the following four properties:

- E satisfies Condition (L),
- 2 E is cofinal,
- if $v, w \in E^0$ with v a sink, then $w \ge v$, and
- if $v, w \in E^0$ with v an infinite emitter, then $w \ge v$.

Proof.

Let F be a desingularization of E. Then

 $C^*(E)$ is simple

- $\iff C^*(F)$ is simple
- \iff F satisfies Condition (L) and is cofinal
- \iff *E* satisfies Condition (L), is cofinal, and each vertex

can reach every sink and every infinite emitter.

Theorem (The Dichotomy for Simple Graph Algebras)

Let E be a graph. If $C^*(E)$ is simple, then either

- $C^*(E)$ is an AF-algebra if E contains no cycles; or
- 2 $C^*(E)$ is purely infinite if E contains a cycle.

What about ideals when the graph is not row-finite? Let E be a graph that satisfies Condition (K). Then

 $H \mapsto I_H :=$ the ideal generated by $\{p_v : v \in H\}$

is still injective, using the same proof as before.

However, it is no longer true that this map is surjective. The reason the proof for row-finite graphs no longer works is that if I is an ideal, then $\{s_e + I, p_v + I\}$ will not necessarily be a Cuntz-Krieger $E \setminus H$ -family for the graph $E \setminus H$. (And, consequently, it is sometimes not true that $C^*(E)/I_H \cong C^*(E \setminus H)$.)

To describe an ideal in $C^*(E)$ we will need a saturated hereditary subset and one other piece of information. Loosely speaking, this additional piece of information tells us how close $\{s_e + I, p_v + I\}$ is to being a Cuntz-Krieger $E \setminus H$ -family.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Given a saturated hereditary subset $H \subseteq E^0$, we define the *breaking* vertices of H to be the set

$$B_H := \{ v \in E^0 : v \text{ is an infinite-emitter and} \ 0 < |s^{-1}(v) \cap r^{-1}(E^0 \setminus H)| < \infty \}$$

We see that B_H is the set of infinite-emitters that point to a finite number of vertices not in H. Also, since H is hereditary, B_H is disjoint from H. Fix a saturated hereditary subset H of E, and let $S \subseteq B_H$. Define

$$I_{(H,S)} := \text{the ideal in } C^*(E) \text{ generated by}$$
$$\{p_v : v \in H\} \cup \{p_{v_0}^H : v_0 \in S\},\$$

where

$$p_{v_0}^H := p_{v_0} - \sum_{\substack{s(e) = v_0 \ r(e) \notin H}} s_e s_e^*.$$

Note that the definition of B_H ensures that the sum on the right is finite.

Definition

We say that (H, S) is an *admissible pair* for E if H is a saturated hereditary subset of vertices of E and $S \subseteq B_H$. We order admissible pairs by defining $(H, S) \leq (H', S')$ if and only if $H \subseteq H'$ and $S \subseteq H' \cup S'$.

Let E be the graph

Then the saturated hereditary subsets of E are

$$E^{0}, \{w, x, y\}, \{x, y\}, \{y\}, \{x\}, \text{and } \emptyset.$$

Also $B_{\{x\}} = \{w\}$, and $B_H = \emptyset$ for all other H. The admissible pairs of E are:

$$(E^{0}, \emptyset), (\{w, x, y\}, \emptyset), (\{x, y\}, \emptyset), (\{y\}, \emptyset), (\{x\}, \{w\}), (\{x\}, \emptyset), (\emptyset, \emptyset)$$

These admissible pairs are ordered in the following way.

Let E be a graph. The map $(H, S) \mapsto I_{(H,S)}$ is a lattice isomorphism from admissible pairs for E onto the gauge-invariant ideals of $C^*(E)$. (When E satisfies Condition (K) all ideals are gauge invariant, and this map is onto the lattice of ideals of $C^*(E)$.

We'll sketch a proof of this using desingularization.

Lemma

Suppose A is a C^* -algebra, p is a projection in the multiplier algebra M(A), and pAp is a full corner of A. Then the map $I \mapsto plp$ is an order-preserving bijection from the ideals of A to the ideals of pAp. Moreover, this map restricts to a bijection from gauge-invariant ideals of A onto the gauge-invariant ideals of pAp.

イロト イポト イヨト イヨト 二日

Let *E* be a graph and *F* a desingularization. Also let (H, S) be an admissible pair for *E*. We define

$$\tilde{H} := H \cup \{ v_n \in F^0 : v_n \text{ is on a tail added}$$
(1)
to a vertex in $H \}$ (2)

Now for each $v_0 \in S$ let N_{v_0} be the smallest nonnegative integer such that $r(f_j) \in H$ for all $j > N_{v_0}$. Define

$$\mathcal{T}_{v_0} := \{ v_n : v_n \text{ is on the tail added}$$
(3)
to v_0 and $n \ge N_{v_0} \}$ (4)

and define

$$H_{\mathcal{S}}:=\tilde{H}\cup\bigcup_{v_0\in\mathcal{S}}T_{v_0}.$$

Lemma

The map $(H, S) \mapsto H_S$ is an order-preserving bijection from the lattice of admissible pairs of E onto the lattice of saturated hereditary subsets of F.

Mark Tomforde (University of Houston)

Lemma

Let E be a graph and let F be a desingularization of E. Let p_{E^0} be the projection in $M(C^*(F))$ defined by $p_{E^0} = \sum_{v \in E^0} p_v$, and identify $C^*(E)$ with $p_{E^0}C^*(F)p_{E^0}$. If H is a saturated hereditary subset of E^0 and $S \subseteq B_H$, then then

$$p_{E^0}I_{H_S}p_{E^0}=I_{(H,S)}.$$

This shows that the following diagram commutes

and we have our result.

Mark Tomforde (University of Houston)

The ideals $I_{(H,S)}$ are precisely the gauge-invariant ideals in $C^*(E)$.

However, the quotient $C^*(E)/I_{(H,S)}$ is not necessarily isomorphic to $C^*(E \setminus H)$ because the collection $\{s_e + I_{(H,S)}, p_v + I_{(H,S)}\}$ may fail to satisfy the third Cuntz-Krieger relation at breaking vertices for H.

Nonetheless, $C^*(E)/I_{(H,S)}$ is isomorphic to $C^*(F_{H,S})$, where $F_{H,S}$ is the graph defined by

$$\begin{split} F^0_{H,S} &:= (E^0 \setminus H) \cup \{v' : v \in B_H \setminus S\} \\ F^1_{H,S} &:= \{e \in E^1 : r(e) \notin H\} \cup \{e' : e \in E^1, r(e) \in B_H \setminus S\} \end{split}$$

and r and s are extended by s(e') = s(e) and r(e') = r(e)'.

(Note: $F_{(H,B_H)} = E \setminus H$.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うへで

Let E be the graph

Let $(H, S) = (\{x\}, \emptyset)$. (Note: $B_{\{x\}} = \{w\}$.) Then $F_{(H,S)}$ is the graph

