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Some Terminology

A graph E = (E 0,E 1, r , s) consists of a countable set E 0 of vertices, a
countable set E 1 of edges, and maps r , s : E 1 → E 0 identifying the range
and source of each edge.

A path e1 . . . en is a sequence of edges with r(ei ) = s(ei+1). A cycle is a
path with r(en) = s(e1), and we call s(e1) the base point of this cycle.

A sink is a vertex that emits no edges; i.e., s−1(v) = ∅. We write E 0
sinks for

the set of sinks.

An infinite emitter is a vertex that emits an infinite number of edges; i.e.,
s−1(v) is infinite. We write E 0

inf for the set of infinite emitters.

A regular vertex is a vertex that emits a finite and nonzero number of
edges; i.e., 0 < |s−1(v)| <∞. We write E 0

reg for the set of regular vertices.

We say a graph is row-finite if the graph has no infinite emitters.
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Definition

If E = (E 0,E 1, r , s) is a directed graph consisting of a countable set of
vertices E 0, a countable set of edges E 1, and maps r , s : E 1 → E 0

identifying the range and source of each edge, then C ∗(E ) is defined to be
the universal C ∗-algebra generated by mutually orthogonal projections
{pv : v ∈ E 0} and partial isometries {se : e ∈ E 1} with mutually
orthogonal ranges that satisfy

1 s∗e se = pr(e) for all e ∈ E 1

2 pv =
∑

s(e)=v

ses∗e when 0 < |s−1(v)| <∞

3 ses∗e ≤ ps(e) for all e ∈ E 1.

NOTE: At the beginning we’ll restrict to the row-finite case.

NOTE: For row-finite graphs, (2) =⇒ (3).
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(1) Not only does the graph summarize the relations that the generators
satisfy, but also the C ∗-algebraic properties of C ∗(E ) are encoded in the
graph E .

(2) Also, graph C ∗-algebras are fairly tractable. Their structure can be
deduced and their invariants can be computed.

(3) Graph C ∗-algebras include many C ∗-algebras.

Up to isomorphism, graph C ∗-algebras include:

All Cuntz algebras and all Cuntz-Krieger algebras

All finite-dimensional C ∗-algebras

C (T), K(H), Mn(C (T)), T , and certain quantum algebras

Up to Morita Equivalence, graph C ∗-algebras include:

All AF-algebras

All Kirchberg algebras with free K1-group
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THE STANDARD GAUGE ACTION

By the universal property of C ∗(E ), there exists an action
γ : T→ Aut C ∗(E ) with

γz(se) = zse and γz(pv ) = pv

for all e ∈ E 1 and v ∈ E 0.

We say an ideal I / C ∗(E ) is gauge invariant if γz(I ) ⊆ I for all z ∈ T.
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Two technical theorems:

Theorem (Gauge-Invariant Uniqueness)

Let E be a directed graph and let ρ : C ∗(E )→ B be a ∗-homomorphism
between C ∗-algebras. Also let γ denote the standard gauge action on
C ∗(E ). If there exists an action β : T→ Aut B such that βz ◦ ρ = ρ ◦ γz

for each z ∈ T, and if ρ(pv ) 6= 0 for all v ∈ E 0, then ρ is injective.

Definition: An exit for a cycle e1 . . . en is an edge f with s(f ) = s(ei ) but
f 6= ei for some i .

Condition (L): Every cycle has an exit.

Theorem (Cuntz-Krieger Uniqueness)

Let E be a directed graph satisfying Condition (L) and let ρ : C ∗(E )→ B
be a ∗-homomorphism between C ∗-algebras. If ρ(pv ) 6= 0 for all v ∈ E 0,
then ρ is injective.
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Let E = (E 0,E 1, r , s) be a graph. A subset H ⊆ E 0 is hereditary if for any
e ∈ E 1 we have s(e) ∈ H implies r(e) ∈ H. A hereditary subset H ⊆ E 0 is
said to be saturated if whenever v ∈ E 0 is a regular vertex with
{r(e) : e ∈ E 1 and s(e) = v} ⊆ H, then v ∈ H.

If H ⊆ E 0 is a hereditary set, the saturation of H is the smallest saturated
subset H of E 0 containing H.

Example

u

��

// v //

��

w

x y

OO

// z

OOZZ

The set X = {v ,w , z} is hereditary but not saturated. The set
H = {v ,w , y , z} is both saturated and hereditary. We see that X = H.
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Theorem

Let E = (E 0,E 1, r , s) be row-finite.

IH := ideal in C ∗(E ) generated by {pv : v ∈ H}

(a) H 7→ IH is an isomorphism from the lattice of saturated hereditary
subsets of E onto the lattice of gauge-invariant ideals of C ∗(E ).)

(b) If H is saturated hereditary, and we let E \ H be the subgraph of E
whose vertices are E 0 \ H and whose edges are E 1 \ r−1(H), then
C ∗(E )/IH is isomorphic to C ∗(E \ H).

(c) If X is any hereditary subset of E 0, then IX = IX . If we let EX denote
the subgraph of E with vertices X and edges s−1(X ), then C ∗(EX ) is
isomorphic to the subalgebra

C ∗({se , pv : e ∈ s−1(X ) and v ∈ X}),

and this subalgebra is a full corner of the ideal IX .
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Example

Let E be the graph

u
��

MM

  
@@

@@
@@

@

v // w
��

ZZ

x ZZ
��

>>~~~~~~~
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Example

Then the saturated hereditary subsets of E are

E 0

LLLLLLLLLL

rrrrrrrrrr

{u, v ,w}

KKKKKKKKKK
{x , v ,w}

ssssssssss

{v ,w}

∅
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Example

and gauge-invariant ideals of C ∗(E ) are

IE0 = C ∗(E )

MMMMMMMMMM

qqqqqqqqqq

I{u,v ,w}

MMMMMMMMMM
I{x ,v ,w}

qqqqqqqqqq

I{v ,w}

I∅ = {0}
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Example

Let E be the graph
u
��

MM

  
@@

@@
@@

@

v // w
��

ZZ

x ZZ
��

>>~~~~~~~

Let H = {v ,w}. Then

E \ H u
��

MM

x ZZ
��

EH

v // w
��

ZZ

C ∗(E )/IH ∼= C ∗(E \ H) IH is Morita equivalent to C ∗(EH).

(In fact, C ∗(E \ H) ∼= O2 ⊕O2,
and C ∗(EH) ∼= M2(O2).)
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Note: For surjectivity of H 7→ IH , we need to apply the GIUT to E \ H. If
E \ H satisfies Condition (L) for all H, then we could instead use the
CKUT and show all ideals are gauge-invariant.

Definition

A simple cycle in a graph E is a cycle α = α1 . . . αn with the property that
s(αi ) 6= s(α1) for i ∈ {2, 3, . . . , n}.

Condition (K): No vertex in E is the base point of exactly one simple
cycle; that is, every vertex in E is either the base point of no cycles or of
more than one simple cycle.

•
e

** • f
yy

g

jj

The above graph satisfies Condition (K).
Note: Condition (K) implies Condition (L).
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Theorem

If E is a graph, then E satisfies Condition (K) if and only if for every
saturated hereditary subset H of E 0 the subgraph E \ H satisfies
Condition (L).

Theorem

A graph E satisfies Condition (K) if and only if all ideals of C ∗(E ) are
gauge invariant.

(Note: In the earlier example we considered, the lattice of gauge-invariant
ideals that we described consists of all the ideals.)
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SIMPLICITY

Definition

For v ,w ∈ E 0 we write v ≥ w if there exists a path α ∈ E ∗ with s(α) = v
and r(α) = w . In this case we say that v can reach w .

Definition

We say that a graph E is cofinal if for every v ∈ E 0 and every infinite path
α ∈ E∞, there exists i ∈ N for which v ≥ s(αi ).
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Theorem

Let E be a row-finite graph with no sinks. Then C ∗(E ) is simple if and
only if E satisfies Condition (L) and E is cofinal.
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A C ∗-algebra is an AF-algebra (AF stands for approximately
finite-dimensional) if it can be written as the closure of the increasing
union of finite-dimensional C ∗-algebras; or, equivalently, if it is the direct
limit of a sequence of finite-dimensional C ∗-algebras.

Theorem

(Kumjian, Pask, Raeburn) If E is a row-finite graph, then C ∗(E ) is AF if
and only if E has no cycles.
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A simple C ∗-algebra A is purely infinite if every nonzero hereditary
subalgebra of A contains an infinite projection. (The definition of purely
infinite for non-simple C ∗-algebra is more complicated.)

Theorem

(Kumjian, Pask, and Raeburn) If E is a row-finite graph, then every
nonzero hereditary subalgebra of C ∗(E ) contains an infinite projection if
and only if E satisfies Condition (L) and every vertex in E connects to a
cycle.
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THE DICHOTOMY

Theorem (The Dichotomy for Simple Graph Algebras)

Let E be a row-finite graph. If C ∗(E ) is simple, then either

1 C ∗(E ) is an AF-algebra if E contains no cycles; or

2 C ∗(E ) is purely infinite if E contains a cycle.
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NON-ROW-FINITE GRAPHS

Up until now all of our graphs have been row-finite. How do we deal with
arbitrary graphs?

We will use the notation

v
(∞)

// w

to indicate that there are a countably infinite number of edges from v to
w .
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In order to desingularize graphs, we will need to remove sinks and infinite
emitters.

Definition

If E is a graph and v0 is a sink in E , then by adding a tail at v0 we mean
attaching a graph of the form

v0 // v1 // v2 // v3 // · · ·

to E at v0.
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Definition

If E is a graph and v0 is an infinite emitter in E , then by adding a tail at
v0 we mean performing the following process: We first list the edges
g1, g2, g3, . . . of s−1(v0). Then we add a graph of the form

v0
e1 // v1

e2 // v2
e3 // v3

e4 // · · ·

to E at v0, remove the edges in s−1(v0), and for every gj ∈ s−1(v0) we
draw an edge fj from vj−1 to r(gj).

Note: Desingularization is not unique.
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Example

Here is an example of a graph E and a desingularization F of E .

E v0

(∞)

��
w ZZ

F v0

f1

��

// v1 //

f2

~~}}
}}

}}
}}

}}
}}

}}
}}

v2 //

f3

wwnnnnnnnnnnnnnnnnnnnnnnnnnnnn · · ·

f4

ttiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

w ZZ
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Suppose E is the following graph:

w

  A
AA

AA
AA

A x0

v0

(∞)

  A
AA

AA
AA

A

g3

>>||||||||

g1

��

g2

EE

y

>>}}}}}}}}
z0

Label the edges from v0 to z0 as {g4, g5, g6, . . .}. Then a desingularization
of E is given by the following graph F .

w

  A
AA

AA
AA

A x0 // x1 // x2 // x3 // · · ·

v0

f1

��
// v1 //

f2

ii v2 //

f3
``BBBBBBBB

v3 //

f4

vvnnnnnnnnnnnnnnn v4 //

f5

ttiiiiiiiiiiiiiiiiiiiiii · · ·

f6
ssffffffffffffffffffffffffffffff

y

>>}}}}}}}}
z0 // z1 // z2 // z3 // · · ·
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If E is the O∞ graph shown here

.

(∞)

��

then a desingularization is given by:

v0 //
77

v1 //
QQ

v2 //
TT

v3 //
VV

v4 //
XX

· · ·
[[
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Theorem

Let E be a graph. If F is a desingularization of E and pE0 is the projection
in M(C ∗(F )) defined by pE0 :=

∑
v∈E0 pv , then C ∗(E ) is isomorphic to

the corner pE0C ∗(F )pE0 , and this corner is full.

The advantage of the process of desingularization is that it is very
concrete, and it allows us to use the row-finite graph F to see how the
properties of C ∗(E ) are reflected in the graph E . We will see examples of
this in the following, as we show how to extend results for C ∗-algebras of
row-finite graphs to general graph algebras.
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Theorem

Let E be a graph. The graph algebra C ∗(E ) is an AF-algebra if and only if
E has no cycles.

Proof.

Let F be a desingularization of E . Then

C ∗(E ) is AF ⇐⇒ C ∗(F ) is AF

⇐⇒ F has no cycles

⇐⇒ E has no cycles.
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Theorem

Let E be a graph. If E satisfies Condition (L) and every vertex in E
connects to a cycle in E , then there exists an infinite projection in every
nonzero hereditary subalgebra of C ∗(E ).

Proof.

Let F be a desingularization of E . Then

E satisfies Condition (L) and every vertex

in E connects to a cycle

=⇒F satisfies Condition (L) and every vertex

in F connects to a cycle

=⇒there is an infinite projection in every

nonzero hereditary subalgebra of C ∗(F )

=⇒there is an infinite projection in every

nonzero hereditary subalgebra of C ∗(E ).
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Theorem

If E is a graph, then C ∗(E ) is simple if and only if E has the following four
properties:

1 E satisfies Condition (L),

2 E is cofinal,

3 if v ,w ∈ E 0 with v a sink, then w ≥ v, and

4 if v ,w ∈ E 0 with v an infinite emitter, then w ≥ v.

Proof.

Let F be a desingularization of E . Then

C ∗(E ) is simple

⇐⇒ C ∗(F ) is simple

⇐⇒ F satisfies Condition (L) and is cofinal

⇐⇒ E satisfies Condition (L), is cofinal, and each vertex

can reach every sink and every infinite emitter.
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Theorem (The Dichotomy for Simple Graph Algebras)

Let E be a graph. If C ∗(E ) is simple, then either

1 C ∗(E ) is an AF-algebra if E contains no cycles; or

2 C ∗(E ) is purely infinite if E contains a cycle.
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What about ideals when the graph is not row-finite?
Let E be a graph that satisfies Condition (K). Then

H 7→ IH := the ideal generated by {pv : v ∈ H}

is still injective, using the same proof as before.
However, it is no longer true that this map is surjective. The reason the
proof for row-finite graphs no longer works is that if I is an ideal, then
{se + I , pv + I} will not necessarily be a Cuntz-Krieger E \ H-family for
the graph E \ H. (And, consequently, it is sometimes not true that
C ∗(E )/IH ∼= C ∗(E \ H).)
To describe an ideal in C ∗(E ) we will need a saturated hereditary subset
and one other piece of information. Loosely speaking, this additional piece
of information tells us how close {se + I , pv + I} is to being a
Cuntz-Krieger E \ H-family.
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Given a saturated hereditary subset H ⊆ E 0, we define the breaking
vertices of H to be the set

BH := {v ∈ E 0 : v is an infinite-emitter and

0 < |s−1(v) ∩ r−1(E 0 \ H)| <∞}.

We see that BH is the set of infinite-emitters that point to a finite number
of vertices not in H. Also, since H is hereditary, BH is disjoint from H.
Fix a saturated hereditary subset H of E , and let S ⊆ BH . Define

I(H,S) := the ideal in C ∗(E ) generated by

{pv : v ∈ H} ∪ {pH
v0

: v0 ∈ S},

where
pH
v0

:= pv0 −
∑

s(e)=v0
r(e)/∈H

ses∗e .

Note that the definition of BH ensures that the sum on the right is finite.
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Definition

We say that (H, S) is an admissible pair for E if H is a saturated
hereditary subset of vertices of E and S ⊆ BH . We order admissible pairs
by defining (H,S) ≤ (H ′,S ′) if and only if H ⊆ H ′ and S ⊆ H ′ ∪ S ′.

Let E be the graph

v
(∞)

// w
(∞)

//

&&NNNNNNNNNNNNN x

y

Then the saturated hereditary subsets of E are

E 0, {w , x , y}, {x , y}, {y}, {x}, and ∅.

Also B{x} = {w}, and BH = ∅ for all other H. The admissible pairs of E
are:

(E 0, ∅), ({w , x , y}, ∅), ({x , y}, ∅), ({y}, ∅),
({x}, {w}), ({x}, ∅), (∅, ∅)
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These admissible pairs are ordered in the following way.

(E 0, ∅)

({w , x , y}, ∅)

PPPPPPPPPPPP

ooooooooooo

({x , y}, ∅)

WWWWWWWWWWWWWWWWWWWWWWWWWW ({x}, {w})

({y}, ∅)

OOOOOOOOOOOO
({x}, ∅)

nnnnnnnnnnnn

(∅, ∅)
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Theorem

Let E be a graph. The map (H, S) 7→ I(H,S) is a lattice isomorphism from
admissible pairs for E onto the gauge-invariant ideals of C ∗(E ). (When E
satisfies Condition (K) all ideals are gauge invariant, and this map is onto
the lattice of ideals of C ∗(E ).

We’ll sketch a proof of this using desingularization.

Lemma

Suppose A is a C ∗-algebra, p is a projection in the multiplier algebra
M(A), and pAp is a full corner of A. Then the map I 7→ pIp is an
order-preserving bijection from the ideals of A to the ideals of pAp.
Moreover, this map restricts to a bijection from gauge-invariant ideals of A
onto the gauge-invariant ideals of pAp.
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Let E be a graph and F a desingularization. Also let (H,S) be an
admissible pair for E .
We define

H̃ := H ∪ {vn ∈ F 0 : vn is on a tail added (1)

to a vertex in H} (2)

Now for each v0 ∈ S let Nv0 be the smallest nonnegative integer such that
r(fj) ∈ H for all j > Nv0 .
Define

Tv0 := {vn :vn is on the tail added (3)

to v0 and n ≥ Nv0} (4)

and define
HS := H̃ ∪

⋃
v0∈S

Tv0 .

Lemma

The map (H, S) 7→ HS is an order-preserving bijection from the lattice of
admissible pairs of E onto the lattice of saturated hereditary subsets of F .
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Lemma

Let E be a graph and let F be a desingularization of E . Let pE0 be the
projection in M(C ∗(F )) defined by pE0 =

∑
v∈E0 pv , and identify C ∗(E )

with pE0C ∗(F )pE0 . If H is a saturated hereditary subset of E 0 and
S ⊆ BH , then then

pE0 IHS
pE0 = I(H,S).

This shows that the following diagram commutes

admissible pairs in E

(H,S)
↓

HS

��

(H,S) 7→I(H,S)
// ideals in C ∗(E )

sat. her. subsets of F
H 7→IH

// ideals in C ∗(F ).

pIp
↑
I

OO

and we have our result.
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The ideals I(H,S) are precisely the gauge-invariant ideals in C ∗(E ).

However, the quotient C ∗(E )/I(H,S) is not necessarily isomorphic to
C ∗(E \ H) because the collection {se + I(H,S), pv + I(H,S)} may fail to
satisfy the third Cuntz-Krieger relation at breaking vertices for H.

Nonetheless, C ∗(E )/I(H,S) is isomorphic to C ∗(FH,S), where FH,S is the
graph defined by

F 0
H,S := (E 0\H) ∪ {v ′ : v ∈ BH\S}

F 1
H,S := {e ∈ E 1 : r(e) /∈ H} ∪ {e ′ : e ∈ E 1, r(e) ∈ BH\S}

and r and s are extended by s(e ′) = s(e) and r(e ′) = r(e)′.

(Note: F(H,BH) = E \ H.)
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Let E be the graph

v
(∞)

// w
(∞)

//

&&NNNNNNNNNNNNN x

y

Let (H, S) = ({x}, ∅). (Note: B{x} = {w}.)
Then F(H,S) is the graph

w ′

v
(∞)

//

(∞)

>>~~~~~~~~~~~~~~~~
w

''NNNNNNNNNNNNN

y

and C ∗(E )/I(H,S)
∼= C ∗(F(H,S)).
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