Talk 1: An Introduction to Graph C^{*}-algebras

Mark Tomforde
University of Houston, USA

July, 2010

Some Terminology

A graph $E=\left(E^{0}, E^{1}, r, s\right)$ consists of a countable set E^{0} of vertices, a countable set E^{1} of edges, and maps $r, s: E^{1} \rightarrow E^{0}$ identifying the range and source of each edge.

A path $e_{1} \ldots e_{n}$ is a sequence of edges with $r\left(e_{i}\right)=s\left(e_{i+1}\right)$. A cycle is a path with $r\left(e_{n}\right)=s\left(e_{1}\right)$, and we call $s\left(e_{1}\right)$ the base point of this cycle.

A sink is a vertex that emits no edges; i.e., $s^{-1}(v)=\emptyset$. We write $E_{\text {sinks }}^{0}$ for the set of sinks.

An infinite emitter is a vertex that emits an infinite number of edges; i.e., $s^{-1}(v)$ is infinite. We write E_{inf}^{0} for the set of infinite emitters.

A regular vertex is a vertex that emits a finite and nonzero number of edges; i.e., $0<\left|s^{-1}(v)\right|<\infty$. We write $E_{\text {reg }}^{0}$ for the set of regular vertices.

We say a graph is row-finite if the graph has no infinite emitters.

Definition

If $E=\left(E^{0}, E^{1}, r, s\right)$ is a directed graph consisting of a countable set of vertices E^{0}, a countable set of edges E^{1}, and maps $r, s: E^{1} \rightarrow E^{0}$ identifying the range and source of each edge, then $C^{*}(E)$ is defined to be the universal C^{*}-algebra generated by mutually orthogonal projections $\left\{p_{v}: v \in E^{0}\right\}$ and partial isometries $\left\{s_{e}: e \in E^{1}\right\}$ with mutually orthogonal ranges that satisfy
(1) $s_{e}^{*} s_{e}=p_{r(e)}$ for all $e \in E^{1}$
(3) $p_{v}=\sum_{s(e)=v} s_{e} s_{e}^{*} \quad$ when $0<\left|s^{-1}(v)\right|<\infty$
(0) $s_{e} s_{e}^{*} \leq p_{s(e)}$ for all $e \in E^{1}$.

NOTE: At the beginning we'll restrict to the row-finite case.
NOTE: For row-finite graphs, $(2) \Longrightarrow$ (3).
(1) Not only does the graph summarize the relations that the generators satisfy, but also the C^{*}-algebraic properties of $C^{*}(E)$ are encoded in the graph E.
(2) Also, graph C^{*}-algebras are fairly tractable. Their structure can be deduced and their invariants can be computed.
(3) Graph C^{*}-algebras include many C^{*}-algebras.

Up to isomorphism, graph C^{*}-algebras include:

- All Cuntz algebras and all Cuntz-Krieger algebras
- All finite-dimensional C^{*}-algebras
- $C(\mathbb{T}), \mathcal{K}(H), M_{n}(C(\mathbb{T})), \mathcal{T}$, and certain quantum algebras

Up to Morita Equivalence, graph C^{*}-algebras include:

- All AF-algebras
- All Kirchberg algebras with free K_{1}-group

THE STANDARD GAUGE ACTION

By the universal property of $C^{*}(E)$, there exists an action
$\gamma: \mathbb{T} \rightarrow$ Aut $C^{*}(E)$ with

$$
\gamma_{z}\left(s_{e}\right)=z s_{e} \quad \text { and } \quad \gamma_{z}\left(p_{v}\right)=p_{v}
$$

for all $e \in E^{1}$ and $v \in E^{0}$.

We say an ideal $I \triangleleft C^{*}(E)$ is gauge invariant if $\gamma_{z}(I) \subseteq I$ for all $z \in \mathbb{T}$.

Two technical theorems:
Theorem (Gauge-Invariant Uniqueness)
Let E be a directed graph and let $\rho: C^{*}(E) \rightarrow B$ be a *-homomorphism between C^{*}-algebras. Also let γ denote the standard gauge action on $C^{*}(E)$. If there exists an action $\beta: \mathbb{T} \rightarrow$ Aut B such that $\beta_{z} \circ \rho=\rho \circ \gamma_{z}$ for each $z \in \mathbb{T}$, and if $\rho\left(p_{v}\right) \neq 0$ for all $v \in E^{0}$, then ρ is injective.

Definition: An exit for a cycle $e_{1} \ldots e_{n}$ is an edge f with $s(f)=s\left(e_{i}\right)$ but $f \neq e_{i}$ for some i.

Condition (L): Every cycle has an exit.

Theorem (Cuntz-Krieger Uniqueness)

Let E be a directed graph satisfying Condition (L) and let $\rho: C^{*}(E) \rightarrow B$ be a $*$-homomorphism between C^{*}-algebras. If $\rho\left(p_{v}\right) \neq 0$ for all $v \in E^{0}$, then ρ is injective.

Let $E=\left(E^{0}, E^{1}, r, s\right)$ be a graph. A subset $H \subseteq E^{0}$ is hereditary if for any $e \in E^{1}$ we have $s(e) \in H$ implies $r(e) \in H$. A hereditary subset $H \subseteq E^{0}$ is said to be saturated if whenever $v \in E^{0}$ is a regular vertex with $\left\{r(e): e \in E^{1}\right.$ and $\left.s(e)=v\right\} \subseteq H$, then $v \in H$.

If $H \subseteq E^{0}$ is a hereditary set, the saturation of H is the smallest saturated subset \bar{H} of E^{0} containing H.

Example

The set $X=\{v, w, z\}$ is hereditary but not saturated. The set $H=\{v, w, y, z\}$ is both saturated and hereditary. We see that $\bar{X}=H$.

Theorem

Let $E=\left(E^{0}, E^{1}, r, s\right)$ be row-finite.

$$
I_{H}:=\text { ideal in } C^{*}(E) \text { generated by }\left\{p_{v}: v \in H\right\}
$$

(a) $H \mapsto I_{H}$ is an isomorphism from the lattice of saturated hereditary subsets of E onto the lattice of gauge-invariant ideals of $C^{*}(E)$.)
(b) If H is saturated hereditary, and we let $E \backslash H$ be the subgraph of E whose vertices are $E^{0} \backslash H$ and whose edges are $E^{1} \backslash r^{-1}(H)$, then $C^{*}(E) / I_{H}$ is isomorphic to $C^{*}(E \backslash H)$.
(c) If X is any hereditary subset of E^{0}, then $I_{X}=I_{\bar{X}}$. If we let E_{X} denote the subgraph of E with vertices X and edges $s^{-1}(X)$, then $C^{*}\left(E_{X}\right)$ is isomorphic to the subalgebra

$$
C^{*}\left(\left\{s_{e}, p_{v}: e \in s^{-1}(X) \text { and } v \in X\right\}\right)
$$

and this subalgebra is a full corner of the ideal I_{X}.

Example

Let E be the graph

Example

Then the saturated hereditary subsets of E are

Example

and gauge-invariant ideals of $C^{*}(E)$ are

Example

Let E be the graph

Let $H=\{v, w\}$. Then

E_{H}

Note: For surjectivity of $H \mapsto I_{H}$, we need to apply the GIUT to $E \backslash H$. If $E \backslash H$ satisfies Condition (L) for all H, then we could instead use the CKUT and show all ideals are gauge-invariant.

Definition

A simple cycle in a graph E is a cycle $\alpha=\alpha_{1} \ldots \alpha_{n}$ with the property that $s\left(\alpha_{i}\right) \neq s\left(\alpha_{1}\right)$ for $i \in\{2,3, \ldots, n\}$.

Condition (K): No vertex in E is the base point of exactly one simple cycle; that is, every vertex in E is either the base point of no cycles or of more than one simple cycle.

The above graph satisfies Condition (K).
Note: Condition (K) implies Condition (L).

Theorem

If E is a graph, then E satisfies Condition (K) if and only if for every saturated hereditary subset H of E^{0} the subgraph $E \backslash H$ satisfies Condition (L).

Theorem

A graph E satisfies Condition (K) if and only if all ideals of $C^{*}(E)$ are gauge invariant.
(Note: In the earlier example we considered, the lattice of gauge-invariant ideals that we described consists of all the ideals.)

SIMPLICITY

Definition

For $v, w \in E^{0}$ we write $v \geq w$ if there exists a path $\alpha \in E^{*}$ with $s(\alpha)=v$ and $r(\alpha)=w$. In this case we say that v can reach w.

Definition

We say that a graph E is cofinal if for every $v \in E^{0}$ and every infinite path $\alpha \in E^{\infty}$, there exists $i \in \mathbb{N}$ for which $v \geq s\left(\alpha_{i}\right)$.

Theorem

Let E be a row-finite graph with no sinks. Then $C^{*}(E)$ is simple if and only if E satisfies Condition (L) and E is cofinal.

A C^{*}-algebra is an $A F$-algebra (AF stands for approximately finite-dimensional) if it can be written as the closure of the increasing union of finite-dimensional C^{*}-algebras; or, equivalently, if it is the direct limit of a sequence of finite-dimensional C^{*}-algebras.

Theorem

(Kumjian, Pask, Raeburn) If E is a row-finite graph, then $C^{*}(E)$ is $A F$ if and only if E has no cycles.

A simple C^{*}-algebra A is purely infinite if every nonzero hereditary subalgebra of A contains an infinite projection. (The definition of purely infinite for non-simple C^{*}-algebra is more complicated.)

Theorem

(Kumjian, Pask, and Raeburn) If E is a row-finite graph, then every nonzero hereditary subalgebra of $C^{*}(E)$ contains an infinite projection if and only if E satisfies Condition (L) and every vertex in E connects to a cycle.

THE DICHOTOMY

Theorem (The Dichotomy for Simple Graph Algebras)
Let E be a row-finite graph. If $C^{*}(E)$ is simple, then either
(1) $C^{*}(E)$ is an $A F$-algebra if E contains no cycles; or
(2) $C^{*}(E)$ is purely infinite if E contains a cycle.

NON-ROW-FINITE GRAPHS

Up until now all of our graphs have been row-finite. How do we deal with arbitrary graphs?

We will use the notation

$$
v \xrightarrow{(\infty)} w
$$

to indicate that there are a countably infinite number of edges from v to w.

In order to desingularize graphs, we will need to remove sinks and infinite emitters.

Definition

If E is a graph and v_{0} is a sink in E, then by adding a tail at v_{0} we mean attaching a graph of the form

$$
v_{0} \longrightarrow v_{1} \longrightarrow v_{2} \longrightarrow v_{3}
$$ to E at v_{0}.

Definition

If E is a graph and v_{0} is an infinite emitter in E, then by adding a tail at v_{0} we mean performing the following process: We first list the edges $g_{1}, g_{2}, g_{3}, \ldots$ of $s^{-1}\left(v_{0}\right)$. Then we add a graph of the form

to E at v_{0}, remove the edges in $s^{-1}\left(v_{0}\right)$, and for every $g_{j} \in s^{-1}\left(v_{0}\right)$ we draw an edge f_{j} from v_{j-1} to $r\left(g_{j}\right)$.

Note: Desingularization is not unique.

Example

Here is an example of a graph E and a desingularization F of E.

Suppose E is the following graph:

Label the edges from v_{0} to z_{0} as $\left\{g_{4}, g_{5}, g_{6}, \ldots\right\}$. Then a desingularization of E is given by the following graph F.

If E is the \mathcal{O}_{∞} graph shown here

then a desingularization is given by:

Theorem

Let E be a graph. If F is a desingularization of E and $p_{E^{0}}$ is the projection in $M\left(C^{*}(F)\right)$ defined by $p_{E^{0}}:=\sum_{v \in E^{0}} p_{v}$, then $C^{*}(E)$ is isomorphic to the corner $p_{E^{0}} C^{*}(F) p_{E^{0}}$, and this corner is full.

The advantage of the process of desingularization is that it is very concrete, and it allows us to use the row-finite graph F to see how the properties of $C^{*}(E)$ are reflected in the graph E. We will see examples of this in the following, as we show how to extend results for C^{*}-algebras of row-finite graphs to general graph algebras.

Theorem

Let E be a graph. The graph algebra $C^{*}(E)$ is an $A F$-algebra if and only if E has no cycles.

Proof.

Let F be a desingularization of E. Then

$$
\begin{aligned}
C^{*}(E) \text { is } A F & \Longleftrightarrow C^{*}(F) \text { is } A F \\
& \Longleftrightarrow F \text { has no cycles } \\
& \Longleftrightarrow E \text { has no cycles. }
\end{aligned}
$$

Theorem

Let E be a graph. If E satisfies Condition (L) and every vertex in E connects to a cycle in E, then there exists an infinite projection in every nonzero hereditary subalgebra of $C^{*}(E)$.

Proof.

Let F be a desingularization of E. Then
E satisfies Condition (L) and every vertex in E connects to a cycle
$\Longrightarrow F$ satisfies Condition (L) and every vertex in F connects to a cycle
\Longrightarrow there is an infinite projection in every nonzero hereditary subalgebra of $C^{*}(F)$
\Longrightarrow there is an infinite projection in every nonzero hereditary subalgebra of $C^{*}(E)$.

Theorem

If E is a graph, then $C^{*}(E)$ is simple if and only if E has the following four properties:
(1) E satisfies Condition (L),
(2) E is cofinal,
(0) if $v, w \in E^{0}$ with v a sink, then $w \geq v$, and
(0) if $v, w \in E^{0}$ with v an infinite emitter, then $w \geq v$.

Proof.

Let F be a desingularization of E. Then
$C^{*}(E)$ is simple
$\Longleftrightarrow C^{*}(F)$ is simple
$\Longleftrightarrow F$ satisfies Condition (L) and is cofinal
$\Longleftrightarrow E$ satisfies Condition (L), is cofinal, and each vertex can reach every sink and every infinite emitter.

Theorem (The Dichotomy for Simple Graph Algebras)
Let E be a graph. If $C^{*}(E)$ is simple, then either
(1) $C^{*}(E)$ is an $A F$-algebra if E contains no cycles; or
(2) $C^{*}(E)$ is purely infinite if E contains a cycle.

What about ideals when the graph is not row-finite? Let E be a graph that satisfies Condition (K). Then

$$
H \mapsto I_{H}:=\text { the ideal generated by }\left\{p_{v}: v \in H\right\}
$$

is still injective, using the same proof as before.
However, it is no longer true that this map is surjective. The reason the proof for row-finite graphs no longer works is that if I is an ideal, then $\left\{s_{e}+I, p_{v}+I\right\}$ will not necessarily be a Cuntz-Krieger $E \backslash H$-family for the graph $E \backslash H$. (And, consequently, it is sometimes not true that $C^{*}(E) / I_{H} \cong C^{*}(E \backslash H)$.)
To describe an ideal in $C^{*}(E)$ we will need a saturated hereditary subset and one other piece of information. Loosely speaking, this additional piece of information tells us how close $\left\{s_{e}+I, p_{v}+I\right\}$ is to being a Cuntz-Krieger $E \backslash H$-family.

Given a saturated hereditary subset $H \subseteq E^{0}$, we define the breaking vertices of H to be the set

$$
\begin{aligned}
& B_{H}:=\left\{v \in E^{0}: v\right. \text { is an infinite-emitter and } \\
& \left.\qquad 0<\left|s^{-1}(v) \cap r^{-1}\left(E^{0} \backslash H\right)\right|<\infty\right\} .
\end{aligned}
$$

We see that B_{H} is the set of infinite-emitters that point to a finite number of vertices not in H. Also, since H is hereditary, B_{H} is disjoint from H. Fix a saturated hereditary subset H of E, and let $S \subseteq B_{H}$. Define

$$
\begin{aligned}
& I_{(H, S)}:=\text { the ideal in } C^{*}(E) \text { generated by } \\
& \qquad\left\{p_{v}: v \in H\right\} \cup\left\{p_{v_{0}}^{H}: v_{0} \in S\right\},
\end{aligned}
$$

where

$$
p_{v_{0}}^{H}:=p_{v_{0}}-\sum_{\substack{s(e)=v_{0} \\ r(e) \notin H}} s_{e} s_{e}^{*} .
$$

Note that the definition of B_{H} ensures that the sum on the right is finite.

Definition

We say that (H, S) is an admissible pair for E if H is a saturated hereditary subset of vertices of E and $S \subseteq B_{H}$. We order admissible pairs by defining $(H, S) \leq\left(H^{\prime}, S^{\prime}\right)$ if and only if $H \subseteq H^{\prime}$ and $S \subseteq H^{\prime} \cup S^{\prime}$.

Let E be the graph

Then the saturated hereditary subsets of E are

$$
E^{0},\{w, x, y\},\{x, y\},\{y\},\{x\}, \text { and } \emptyset .
$$

Also $B_{\{x\}}=\{w\}$, and $B_{H}=\emptyset$ for all other H. The admissible pairs of E are:

$$
\begin{aligned}
&\left(E^{0}, \emptyset\right),(\{w, x, y\}, \emptyset),(\{x, y\}, \emptyset),(\{y\}, \emptyset), \\
&(\{x\},\{w\}),(\{x\}, \emptyset),(\emptyset, \emptyset)
\end{aligned}
$$

These admissible pairs are ordered in the following way.

Abstract

Theorem Let E be a graph. The map $(H, S) \mapsto I_{(H, S)}$ is a lattice isomorphism from admissible pairs for E onto the gauge-invariant ideals of $C^{*}(E)$. (When E satisfies Condition (K) all ideals are gauge invariant, and this map is onto the lattice of ideals of $C^{*}(E)$.

We'll sketch a proof of this using desingularization.

Lemma

Suppose A is a C^{*}-algebra, p is a projection in the multiplier algebra $M(A)$, and $p A p$ is a full corner of A. Then the map $I \mapsto p l p$ is an order-preserving bijection from the ideals of A to the ideals of $p A p$. Moreover, this map restricts to a bijection from gauge-invariant ideals of A onto the gauge-invariant ideals of $p A p$.

Let E be a graph and F a desingularization. Also let (H, S) be an admissible pair for E.
We define

$$
\begin{array}{r}
\tilde{H}:=H \cup\left\{v_{n} \in F^{0}: v_{n}\right. \\
\text { is on a tail added } \tag{2}\\
\text { to a vertex in } H\}
\end{array}
$$

Now for each $v_{0} \in S$ let $N_{v_{0}}$ be the smallest nonnegative integer such that $r\left(f_{j}\right) \in H$ for all $j>N_{v_{0}}$.
Define

$$
\begin{gather*}
T_{v_{0}}:=\left\{v_{n}: v_{n}\right. \text { is on the tail added } \tag{3}\\
\text { to } \left.v_{0} \text { and } n \geq N_{v_{0}}\right\} \tag{4}
\end{gather*}
$$

and define

$$
H_{S}:=\tilde{H} \cup \bigcup_{v_{0} \in S} T_{v_{0}} .
$$

Lemma
The map $(H, S) \mapsto H_{S}$ is an order-preserving bijection from the lattice of admissible pairs of E onto the lattice of saturated hereditary subsets of F.

Lemma

Let E be a graph and let F be a desingularization of E. Let $p_{E^{0}}$ be the projection in $M\left(C^{*}(F)\right)$ defined by $p_{E^{0}}=\sum_{v \in E^{0}} p_{v}$, and identify $C^{*}(E)$ with $p_{E^{0}} C^{*}(F) p_{E^{0}}$. If H is a saturated hereditary subset of E^{0} and
$S \subseteq B_{H}$, then then

$$
p_{E^{0}} I_{H_{S}} p_{E^{0}}=I_{(H, S)}
$$

This shows that the following diagram commutes
and we have our result.

The ideals $I_{(H, S)}$ are precisely the gauge-invariant ideals in $C^{*}(E)$.
However, the quotient $C^{*}(E) / I_{(H, S)}$ is not necessarily isomorphic to $C^{*}(E \backslash H)$ because the collection $\left\{s_{e}+I_{(H, S)}, p_{V}+I_{(H, S)}\right\}$ may fail to satisfy the third Cuntz-Krieger relation at breaking vertices for H.

Nonetheless, $C^{*}(E) / I_{(H, S)}$ is isomorphic to $C^{*}\left(F_{H, S}\right)$, where $F_{H, S}$ is the graph defined by

$$
\begin{aligned}
& F_{H, S}^{0}:=\left(E^{0} \backslash H\right) \cup\left\{v^{\prime}: v \in B_{H} \backslash S\right\} \\
& F_{H, S}^{1}:=\left\{e \in E^{1}: r(e) \notin H\right\} \cup\left\{e^{\prime}: e \in E^{1}, r(e) \in B_{H} \backslash S\right\}
\end{aligned}
$$

and r and s are extended by $s\left(e^{\prime}\right)=s(e)$ and $r\left(e^{\prime}\right)=r(e)^{\prime}$.
(Note: $\left.F_{\left(H, B_{H}\right)}=E \backslash H.\right)$

Let E be the graph

Let $(H, S)=(\{x\}, \emptyset) . \quad\left(\right.$ Note: $\left.B_{\{x\}}=\{w\}.\right)$
Then $F_{(H, S)}$ is the graph

and $C^{*}(E) / I_{(H, S)} \cong C^{*}\left(F_{(H, S)}\right)$.

