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K -theory is an important invariant for C ∗-algebras. Moreover, in certain
situations K -theory classifies C ∗-algebras up to Morita equivalence and up
to isomorphism.

One remarkable, and very useful, aspect of graph C ∗-algebras is that we
can compute the K -theory in a concrete manner. Also, in many situations
we can determine the range of this invariant.
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Let A be a unital C ∗-algebra.

Definition

Let Proj Mn(A) be the set of projections in Mn(A). Identifying
p ∈ Proj Mn(A) with the projection p ⊕ 0 in Proj Mn+1(A) we may view
Proj Mn(A) as a subset of Proj Mn+1(A). We let

Proj∞(A) =
∞⋃

n=1

Proj Mn(A).

For p, q ∈ Proj∞(A) we write p ∼ q if there exists u ∈ Proj∞(A) with
p = uu∗ and q = u∗u.
We let [p]0 denote the equivalence class of p ∈ Proj∞(A). We define an
addition on these equivalence classes by setting [p]0 + [q]0 equal to[(

p 0
0 q

)]
0
. Then Proj∞(A)/ ∼ is an abelian semigroup. We define K0(A)

as its Grothendieck group; that is K0(A) is the abelian group of formal
differences

K0(A) := {[p]0 − [q]0 : p, q ∈ Proj∞(A)}.
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Definition

The group K1(A) is defined using the groups U(Mn(A)) of unitary
elements in Mn(A). We embed U(Mn(A)) into U(Mn+1(A)) by
u 7→ u ⊕ 1. We then let

U∞(A) :=
∞⋃

n=1

U(Mn(A)).

We define an equivalence relation on U∞(A) as follows: If u ∈ Um(A) and
v ∈ Un(A), we write u ∼ v if there is a natural number k ≥ max{m, n}
such that

(
u 0
0 1k−n

)
is homotopic to

(
v 0
0 1k−m

)
in Uk(A) (i.e., there exists a

continuous map h : [0, 1]→ Uk(A) such that h(0) =
(

u 0
0 1k−n

)
and

h(1) =
(

v 0
0 1k−m

)
. We denote the equivalence class of u ∈ U∞(A) by [u]1.

We define K1(A) to be

K1(A) := {[u]1 : u ∈ U∞(A)}

with addition given by [u]1 + [v ]1 := [( u 0
0 v )]1. It is true (but not obvious)

that K1(A) is an abelian group.
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The K -groups K0(A) and K1(A) can also be defined when A is nonunital.
If φ : A→ B is a homomorphism between C ∗-algebras, then φ induces
homomorphisms φn : Mn(A)→ Mn(B) by φ((aij)) = (φ(aij)). Since the
φn’s map projections to projections and unitaries to unitaries, they induce

K0(φ) : K0(A)→ K0(B)

and
K1(φ) : K1(A)→ K1(B).

This process is functorial: the identity homomorphism induces the identity
map on K -groups, and Ki (φ ◦ ψ) = Ki (φ) ◦ Ki (ψ) for i = 0, 1.
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An ordered abelian group (G ,G+) is an abelian group G together with a
distinguished subset G+ ⊆ G satisfying

(i) G+ + G+ ⊆ G+,

(ii) G+ ∩ (−G+) = {0},
(iii) G+ − G+ = G .

We call G+ the positive cone of G , and it allows us to define an ordering
on G by setting g1 ≤ g2 if and only if g2 − g1 ∈ G+.
We set

K0(A)+ := {[p]0 : p ∈ Proj∞(A)}.

If A is an AF C ∗-algebra, then (K0(A),K0(A)+) is an ordered abelian
group.
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Remark

If E is a graph and v ∈ E 0 is a vertex that is neither a sink nor an infinite
emitter, then pv =

∑
s(e)=v ses∗e , and in K0(C ∗(E )) we have

[pv ]0 =

 ∑
s(e)=v

ses∗e


0

=
∑

s(e)=v

[ses∗e ]0

=
∑

s(e)=v

[s∗e se ]0

=
∑

s(e)=v

[pr(e)]0.

It turns out that K0(C ∗(E )) is generated by the collection {[pv ]0 : v ∈ E 0}
and this collection is subject only to the above relations.
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Let E = (E 0,E 1, r , s) be a row-finite directed graph with no sinks. The
vertex matrix of E is the (possibly infinite) E 0 × E 0 matrix AE whose
entries are the non-zero integers

AE (v ,w) := #{e ∈ E 1 : s(e) = v and r(e) = w}.
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Let E be a row-finite graph. Then each row of the matrix AE contains a
finite number of nonzero entries, and each column of the transpose At

E

contains a finite number of nonzero entries.
Therefore, we have a map

At
E :
⊕
E0

Z→
⊕
E0

Z

defined by left multiplication.
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Theorem

Let E = (E 0,E 1, r , s) be a row-finite graph with no sinks. If AE is the
vertex matrix of E , and At

E − I :
⊕

E0 Z→
⊕

E0 Z by left multiplication,
then

K0(C ∗(E )) ∼= coker(At
E − I )

via an isomorphism taking [pv ]0 to [δv ] for each v ∈ E 0, and

K1(C ∗(E )) ∼= ker(At
E − I ).

Moreover, K0(C ∗(E ))+ is identified with
{∑N

k=1 nk [δvk
] : nk ∈ N

}
in

coker(At
E − I ).

Note: For any graph E , the group K1(C ∗(E )) is free. (Remarkably, this is
the only restriction on the K -theory.)
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The Kernel and Cokernel of a Finite Matrix

Let A be an m × n matrix with integer entries, and consider A : Zn → Zm

by left multiplication. By performing elementary row and column
operations (over Z) to A we obtain

D =



d1 · · · 0
. . .

...
dk

0
...

. . .
...

0 · · · · · · 0


where d1, . . . , dk are nonzero integers with k ≤ min{m, n}. Then

coker A ∼= Z/d1Z⊕ . . .Z/dkZ⊕ Z⊕ . . .⊕ Z︸ ︷︷ ︸
m−k

ker A ∼= Z⊕ . . .⊕ Z︸ ︷︷ ︸
n−k

.
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Let E be the graph
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Then E is row-finite with no sinks, and

AE =
(

3 0 0
2 1 0
0 3 4

)
and At

E − I =
(

2 2 0
0 0 3
0 0 3

)
.

One can perform elementary row and column operations on At
E − I to

obtain (
2 0 0
0 3 0
0 0 0

)
and therefore

K0(C ∗(E )) ∼= Z/2Z⊕ Z/3Z⊕ Z

and
K1(C ∗(E )) ∼= Z.
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Let E be the graph

.��BB .oo .oo .oo · · ·oo

Then E is row-finite with no sinks, and the vertex matrix of this graph is

AE =

(
2 0 0 0 ···
1 0 0 0
0 1 0 0
...

. . .

)
and

At
E − I =

( 1 1 0 0 ···
0 −1 1 0
0 0 −1 1
...

. . .

)
.

One can show this map is injective and surjective, so

K0(C ∗(E )) = coker(At
E − I ) = 0

and
K1(C ∗(E )) = ker(At

E − I ) = 0.
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What about when E has singular vertices (i.e., sinks or infinite emitters)?

Theorem

With respect to the decomposition E 0 = E 0
reg t E 0

sing, the vertex matrix of
E has the form

AE =

(
B C
∗ ∗

)
where B and C have entries in N and the ∗’s have entries in N ∪ {∞}.
Then (

Bt − I
C t

)
:
⊕

v∈E0
reg

Z→
⊕
v∈E0

Z

and

K0(C ∗(E )) ∼= coker

(
Bt − I

C t

)
K1(C ∗(E )) ∼= ker

(
Bt − I

C t

)
.

This can be proven using desingularization or by direct methods.
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Recall . . .

Theorem (The Dichotomy for Simple Graph Algebras)

Let E be a row-finite graph. If C ∗(E ) is simple, then either

1 C ∗(E ) is an AF-algebra if E contains no cycles; or

2 C ∗(E ) is purely infinite if E contains a cycle.

The Dichotomy allows us to classify all simple graph C ∗-algebras by their
K -theory!

Since any simple graph C ∗-algebras are either AF or purely infinite, we
may use either Elliott’s Theorem or the Kirchberg-Phillips Classification
Theorem.
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Theorem (Elliott’s Theorem)

Let A and B be AF-algebras. Then A and B are Morita equivalent if and
only if (K0(A),K0(A)+) ∼= (K0(B),K0(B)+). That is, the ordered
K0-group of an AF-algebra is a complete Morita equivalence invariant.

If A and B are both unital, then A and B are isomorphic if and only if
(K0(A),K0(A)+, [1A]0) ∼= (K0(B),K0(B)+, [1B ]0).
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Theorem (Kirchberg-Phillips)

Let A and B be purely infinite, simple, separable, nuclear C ∗-algebras that
satisfy the Universal Coefficients Theorem.

1 If A and B are both unital, then A is isomorphic to B if and only if
(K0(A), [1]0) ∼= (K0(B), [1]0) and K1(A) ∼= K1(B). Furthermore, A is
Morita equivalent to B if and only if K0(A) ∼= K0(B) and
K1(A) ∼= K1(B).

2 If A and B are nonunital, then A is isomorphic to B if and only if A is
Morita equivalent to B if and only if K0(A) ∼= K0(B) and
K1(A) ∼= K1(B).

Thus for any purely infinite, simple, separable, nuclear C ∗-algebra A that
satisfies the Universal Coefficients Theorem, (K0(A),K1(A)) is a complete
Morita equivalence invariant.

Note: Graph C ∗-algebras are separable, nuclear, and satisfy the UCT.
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Any simple graph C ∗-algebra is either AF or purely infinite.

Corollary

If A is a simple graph C ∗-algebra, then

((K0(A),K0(A)+),K1(A))

is a complete Morita equivalence invariant for A.
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What is the range of this invariant for simple graph C ∗-algebras?

For AF-algebras the range of the invariant (K0(A),K0(A)+) is the
collection of all Riesz groups; i.e. direct limits of the form lim−→(Zn, (Z+)n).

Theorem (Drinen)

If A is an AF-algebra, then there exists a row-finite graph E such that
C ∗(E ) is Morita equivalent to A.

Thus the AF graph C ∗-algebras (i.e., the C ∗-algebras of graphs with no
cycles) have all possible Riesz groups as their K -theories.

For simple AF graph C ∗-algebras, we obtain the collection of all simple
Riesz groups.
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For purely infinite simple separable nuclear C ∗-algebras, all pairs of
countable abelian groups are possible as the K -theory groups.

For graph C ∗-algebras, we know that K1(C ∗(E )) ∼= ker

(
Bt − I

C t

)
, so

K1(C ∗(E )) is a free group. This is the only obstruction.

Theorem (Szymański)

Let (G0,G1) be any pair of countable abelian groups with G1 free. Then
there exists a row-finite transitive graph E such that K0(C ∗(E )) ∼= G0 and
K1(C ∗(E )) ∼= G1.

This shows any Kirchberg algebra with free K1-group is Morita equivalent
to a graph C ∗-algebra.

Thus the range of the invariant for purely infinite simple graph C ∗-algebras
is all pairs of countable abelian groups (G0,G1) with G1 free.
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In addition to K -theory, the Ext group and the the K -homology of graph
C ∗-algebras has been computed. If E is a graph, then with respect to the
decomposition E 0 = E 0

reg t E 0
sing, the vertex matrix of E has the form

AE =

(
B C
∗ ∗

)
where B and C have entries in N and the ∗’s have entries in N ∪ {∞}.
Then (

B − I C
)

:
∏

v∈E0

Z→
∏

v∈E0
reg

Z.

Theorem (T)

Ext(C ∗(E )) ∼= coker
(
B − I C

)
Theorem (Yi)

K 0(C ∗(E )) ∼= ker
(
B − I C

)
K 1(C ∗(E )) ∼= Ext(C ∗(E )) ∼= coker

(
B − I C

)
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Since we frequently want to know about Morita equivalence, we are often
concerned with stability of graph C ∗-algebras.

Recall: A C ∗-algebra A is stable if A ∼= A⊗K. We call A⊗K the
stabillization of A.

Fact: If A and B are separable C ∗-algebras, then A is Morita equivalent to
B if and only if A⊗K ∼= B ⊗K.

Mark Tomforde (University of Houston) Graph C∗-algebras July, 2010 22 / 28



Definition

If E is a graph, then a graph trace on E is a function g : E 0 → R+ with
the following two properties:

1 For any v ∈ E 0 with 0 < |s−1(v)| <∞ we have

g(v) =
∑

s(e)=v

g(r(e)).

2 For any infinite emitter v ∈ G 0 and any finite set of edges
e1, . . . , en ∈ s−1(v) we have

g(v) ≥
n∑

i=1

g(r(ei )).
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Theorem (T)

If E is a graph, then the following are equivalent.

(a) C ∗(E ) is stable

(b) C ∗(E ) has no nonzero unital quotients and no tracial states

(c) Every vertex in E that is on a cycle may be reached by an infinite
number of other vertices and there are no graph traces on E.
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Definition

If E is a graph and v ∈ E 0 is a vertex, then by adding a head to v we
mean attaching a graph of the form

· · · e4 // v3
e3 // v2

e2 // v1
e1 // v

to E .

Theorem

If E is a graph, let Ẽ be the graph obtained by adding a head to each
vertex of E . Then C ∗(Ẽ ) is the stabilization of C ∗(E ); that is,

C ∗(Ẽ ) ∼= C ∗(E )⊗K.
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Example

If E is the graph
•
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@@
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??~~~~~~~
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then Ẽ is the graph

· · · // • // • // •
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· · · // • // • // • // •

??~~~~~~~
// •

��
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and C ∗(Ẽ ) ∼= C ∗(E )⊗K.
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Example

If E is the following graph with one vertex and infinitely many edges, then
C ∗(E ) ∼= O∞

• ∞
yy

and Ẽ is the graph

· · · // • // • // • ∞
yy

so that C ∗(Ẽ ) ∼= O∞ ⊗K
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Corollary

The class of graph C ∗-algebras is closed under stabilization.
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