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Pimsner described a method for taking a C ∗-correspondence X over a
C ∗-algebra A, and constructing a C ∗-algebra OX that generalizes the
Cuntz-Krieger construction and the construction of crossed products by Z.

OX is called the Cuntz-Pimsner algebra, and the collection of these
algebras compose a class of C ∗-algebras that is extraordinarily rich.

Information about OX is very densely codified in (X ,A), and determining
how to extract it has been the focus of much current effort.
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Definition

If A is a C ∗-algebra, then a right Hilbert A-module is a Banach space X
together with a right action of A on X and an A-valued inner product
〈·, ·〉A satisfying

(i) 〈ξ, ηa〉A = 〈ξ, η〉Aa

(ii) 〈ξ, η〉A = 〈η, ξ〉∗A
(iii) 〈ξ, ξ〉A ≥ 0 and ‖ξ‖ = 〈ξ, ξ〉1/2A

for all ξ, η ∈ X and a ∈ A.

L(X ) is the C ∗-algebra of adjointable operators on X

K(X ) is the closed two-sided ideal of compact operators given by

K(X ) := span{Θξ,η : ξ, η ∈ X}

where Θξ,η(ζ) := ξ〈η, ζ〉A.
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Definition

If A is a C ∗-algebra, then a C ∗-correspondence is a right Hilbert A-module
X together with a ∗-homomorphism φ : A→ L(X ). We consider φ as
giving a left action of A on X by setting a · x := φ(a)x .

Definition

If X is a C ∗-correspondence over A, then a representation of X into a
C ∗-algebra B is a pair (π, t) consisting of a ∗-homomorphism π : A→ B
and a linear map t : X → B satisfying

(i) t(ξ)∗t(η) = π(〈ξ, η〉A)

(ii) t(φ(a)ξ) = π(a)t(ξ)

(iii) t(ξa) = t(ξ)π(a)

for all ξ, η ∈ X and a ∈ A.

A representation (π, t) is said to be injective if π is injective. Note that in
this case t will also be isometric since

‖t(ξ)‖2 = ‖t(ξ)∗t(ξ)‖ = ‖π(〈ξ, ξ〉A)‖ = ‖〈ξ, ξ〉A‖ = ‖ξ‖2.
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There is a C ∗-algebra, denoted TX and a representation (πX , tX ) of X in
TX that is universal in the following sense:

• TX is generated as a C ∗-algebra by imπX ∪ im tX

• given any representation (π, t) in a C ∗-algebra B, then there is a
C ∗-homomorphism of TX into B, denoted ρ(π,t), such that π = ρ(π,t) ◦ πX

and t = ρ(π,t) ◦ tX .

X t

��
tX   

AA
AA

AA
AA

TX
ρ(π,t)

//______ B

A
π

@@
πX

>>}}}}}}}}

We call TX the Toeplitz algebra associated to X .
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Definition

For a representation (π, t) of a C ∗-correspondence X on B there exists a
∗-homomorphism π(1) : K(X )→ B with the property that

π(1)(Θξ,η) = t(ξ)t(η)∗.

Moreover, if (π, t) is an injective representation, then π(1) will be injective
as well.

Definition

If X is a C ∗-correspondence over A and K is an ideal in J(X ), then we say
that a representation (π, t) is coisometric on K , or is K-coisometric if

π(1)(φ(a)) = π(a) for all a ∈ K .
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Definition

For an ideal I in a C ∗-algebra A we define

I⊥ := {a ∈ A : ab = 0 for all b ∈ I}.

If X is a C ∗-correspondence over A, we define an ideal JX of A by

JX := φ−1(K(X )) ∩ (ker φ)⊥.

Note that JX = φ−1(K(X )) when φ is injective, and that JX is the
maximal ideal on which the restriction of φ is an injection into K(X ).
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There is a C ∗-algebra, denoted OX and a JX -coisometric representation
(πX , tX ) of X in OX that is universal in the following sense:

• OX is generated as a C ∗-algebra by imπX ∪ im tX

• given any JX -coisometric representation (π, t) in a C ∗-algebra B, then
there is a C ∗-homomorphism of OX into B, denoted ρ(π,t), such that
π = ρ(π,t) ◦ πX and t = ρ(π,t) ◦ tX .

X t

��
tX   B

BB
BB

BB
B

OX

ρ(π,t)
//______ B

A
π

@@
πX

>>||||||||

We call OX the Cuntz-Pimsner algebra associated to X . (Pimsner made
the definition when φ is injective, Katsura in general.)
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Graph C ∗-algebras

Recall that if E := (E 0,E 1, r , s) is a directed graph, then C ∗(E ) is the
universal C ∗-algebra generated by a Cuntz-Krieger E -family; i.e., a
collection of partial isometries {se : e ∈ E 1} with mutually orthogonal
range projections together with a collection of mutually orthogonal
projections {pv : v ∈ E 0} that satisfy

1 s∗e se = pr(e) for all e ∈ E 1

2 ses
∗
e ≤ ps(e) for all e ∈ E 1

3 pv =
∑

s(e)=v

ses
∗
e for all v ∈ E 0 with 0 < |s−1(v)| <∞
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Example (The Graph C ∗-correspondence)

If E = (E 0,E 1, r , s) is a graph, we define A := C0(E 0) and

X (E ) := {x : E 1 → C : the function v 7→
∑

{f ∈E1:r(f )=v}

|x(f )|2 is in C0(E 0)}.

Then X (E ) is a C ∗-correspondence over A with the operations

(x · a)(f ) := x(f )a(r(f )) for f ∈ E 1

〈x , y〉A(v) :=
∑

{f ∈E1:r(f )=v}

x(f )y(f ) for f ∈ E 1

(φ(a)x)(f ) := a(s(f ))x(f ) for f ∈ E 1.

Note that we could write X (E ) =
⊕0

v∈E0 `2(r−1(v)) where this denotes
the c0 direct sum of the `2(r−1(v))’s. Also note that X (E ) and A are
densely spanned by the point masses {δf : f ∈ E 1} and {δv : v ∈ E 0},
respectively.
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Suppose (π, t) is a representation of X (E ) into B. Let Pv := π(δv ) and
Se := t(δe).

Then t(ξ)∗t(η) = π(〈ξ, η〉A) shows that

S∗e Se = t(δe)∗t(δe) = π(〈δe , δe〉) = π(δr(e)) = Pr(e).

and t(φ(a)ξ) = π(a)t(ξ) shows that

Ps(e)Se = π(δs(e))t(δe) = t(φ(δs(e)δe) = t(δe) = Se

so SeS
∗
e ≤ Ps(e).

Thus two of the Cuntz-Krieger relations follow from the representation
properties.
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Since JX (E) is an ideal of C0(E 0), it has the form span{δv : v ∈ S} for
some S ⊆ E 0. In fact,

JX (E) = span{δv : v ∈ E 0
reg}.

When v ∈ E 0
reg, a short calculation shows

φ(δv ) =
∑

s(e)=v

Θδe ,δe .

Thus if (π, t) is coisometric on JX , for any v ∈ E 0
reg we have

Pv = π(δv ) = π(1)(φ(δv )) = π(1)

 ∑
s(e)=v

Θδe ,δe


=
∑

s(e)=v

t(δe)t(δe)∗ =
∑

s(e)=v

SeS
∗
e .

so {Se ,Pv} is a Cuntz-Krieger E -family.
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Let (πX , tX ) be a universal JX -coisometric representation of X into OX (E).
Then {πX (δv ), tX (δe)} is a Cuntz-Krieger E -family generating OX (E).

Moreover, this Cuntz-Krieger E -family is universal. If {Se ,Pv} is a
Cuntz-Krieger E -family in a C ∗-algebra B, then we may define
π : C0(E 0)→ B by

π(a) =
∑
v∈E0

a(v)Pv ,

and t : X (E )→ B by

t(x) =
∑
e∈E1

x(e)Se .

Then (π, t) is a JX -coisometric representation of X into B. Thus there
exists a ∗-homomorphism ρ : OX (E) → B such that ρ ◦ πX = π and
ρ ◦ tX = t. Hence ρ(πX (δv )) = Pv and ρ(tX (δe)) = Se .

Hence {πX (δv ), tX (δe)} is a universal Cuntz-Krieger E -family generating
OX (E). Thus

OX (E)
∼= C ∗(E ).
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Properties of the graph and properties of the graph correspondence are
related.

Property of X(E) Property of E
φ(δv ) ∈ K(X (E )) v emits a finite number of edges
imφ ⊆ K(X (E )) E is row-finite

δv ∈ ker φ v is a sink
φ is injective E has no sinks

{〈x , y〉A : x , y ∈ X (E )} is dense in A E has no sources

Note: Row-finite with no sinks corresponds to φ(A) ⊆ K(X (E )) with φ
injective.
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We can now seek to describe versions of graph C ∗-algebra theorems for
general Cuntz-Pimsner algebras.

We’ll start with the gauge action . . .

If OX is a Cuntz-Pimsner algebra associated to a C ∗-correspondence X ,
and if (πX , tX ) is a universal JX -coisometric representation, then for any
z ∈ T we have that (πX , ztX ) is also a universal JX -coisometric
representation.

Hence by the universal property, there exists a homomorphism
γz : OX → OX such that γz(πX (a)) = πX (a) for all a ∈ A and
γz(tX (ξ)) = ztX (ξ) for all ξ ∈ X . Since γz−1 is an inverse for this
homomorphism, we see that γz is an automorphism. Thus we have an
action γ : T→ AutOX with the property that γz(πX (a)) = πX (a) and
γz(tX (ξ)) = ztX (ξ).
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Theorem (Gauge-Invariant Uniqueness)

Let X be a C ∗-correspondence over A, and let ρ : OX → B a
∗-homomorphism between C ∗-algebras with the property that ρ|imπX

is
injective. If there exists a gauge action β of T on B such that
βz ◦ ρ = ρ ◦ γz for all z ∈ T, then ρ is injective.

Note: There is no Cuntz-Krieger Uniqueness Theorem for Cuntz-Pimsner
algebras, because there is no satisfactory notion of Condition (L) for
C ∗-correspondences.
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Recall that if E is a row-finite graph, gauge-invariant ideals in C ∗(E )
correspond to saturated hereditary subsets in E 0.

In the graph correspondence

(x · a)(f ) := x(f )a(r(f )) and (φ(a)x)(f ) := a(s(f ))x(f )

Subsets of E 0 correspond to ideals in C0(E 0) by H ↔ span{δv : v ∈ H}.

Definition

Let X be a C ∗-correspondence over A. We say that an ideal I / A is
X-invariant if φ(I )X ⊆ XI . We say that an X -invariant ideal I / A is
X-saturated if

a ∈ JX and φ(a)X ⊆ XI =⇒ a ∈ I .

H is hereditary ⇐⇒ span{δv : v ∈ H} is X (E )-invariant
H is saturated ⇐⇒ span{δv : v ∈ H} is X (E )-saturated.
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Theorem

Let X be a C ∗-correspondence with the property that imφX ⊆ K(X ) and
φ is injective. Also let (πX , tX ) be a universal JX -coisometric
representation of X into OX . Then there is a lattice isomorphism from the
X-saturated X-invariant ideals of A onto the gauge-invariant ideals of OX

given by

I 7→ I(I ) := the ideal in OX generated by πX (I ).

Furthermore, OX/I(I ) ∼= OX/XI , and the ideal I(I ) is Morita equivalent
to OXI .

In general, gauge-invariant ideals of OX correspond to pairs of ideals
coming from A (the so-called O-pairs of Katsura), which generalize the
admissible pairs (H,S) of saturated hereditary subsets and breaking
vertices.
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Some other facts:

The dichotomy does not hold: there are simple Cuntz-Pimsner algebras
that are neither AF nor purely infinite.

In addition, a six-term exact sequence for the K -groups of OX has been
established that allows one to calculate the K -theory of OX in certain
situations.

K0(JX ) // K0(A) // K0(OX )

��

K1(OX )

OO

K1(A)oo K1(JX )oo

All possible K -groups can be realized as the K -theory of Cuntz-Pimsner
algebras.
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Consider the graph C ∗-correspondence case:

K0(JX ) // K0(A) // K0(OX )

��

K1(OX )

OO

K1(A)oo K1(JX )oo

We have A = C0(E 0) and JX = span{δv : v ∈ E 0
reg }. Since these are

spaces of continuous functions on discrete spaces, the K1 groups are zero,
and K0(A) ∼=

⊕
v∈E0 Z and K0(JX ) ∼=

⊕
v∈E0

reg
Z. Thus the exact

sequence becomes

0 // K1(OX ) //

⊕
v∈E0

reg

Z
“

Bt−I
C t

”
//

⊕
v∈E0

Z // K0(OX ) // 0

where AE = ( B C
∗ ∗ ), and we recover the graph C ∗-algebra results

K0(C ∗(E )) ∼= coker
(

Bt−I
C t

)
and K1(C ∗(E )) ∼=

(
Bt−I
C t

)
.
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We can also generalize certain constructions from the graph C ∗-algebra
case to general Cuntz-Pimsner algebras.

Let’s consider the construction of “adding tails to sinks”.

Let E be a graph and v ∈ E 0 be a sink. We add a tail to E to form a
graph F by attaching

v
e1 // v1

e2 // v2
e3 // v3

e4 // · · ·

and then C ∗(E ) is isomorphic to a full corner of C ∗(F ) determined by the
projection p :=

∑
v∈E0 pv .
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v
e1 // v1

e2 // v2
e3 // v3

e4 // · · ·

What happens at the C ∗-correspondence level?

F 1 = E 1 ∪ {e1, e2, e3, . . .} and F 0 = E 0 ∪ {v1, v2, v3, . . .}

X (F ) = X (E )⊕
⊕∞

i=1 C = X (E )⊕ C0({e1, e2, e3, . . .})

C0(F 0) = C0(E 0)⊕
⊕∞

i=1 C = C0(E 0)⊕ C0({v1, v2, v3, . . .}).

Recall:
(x · a)(f ) := x(f )a(r(f ))
〈x , y〉(v) =

∑
r(f )=v x(f )y(f )

(φ(a)x)(f ) := a(s(f ))x(f )

So the right action and inner product are the usual ones given to the
direct sum X (E )⊕ C0({e1, e2, e3, . . .}) over C0(E 0)⊕ C0({v1, v2, v3, . . .}),
but the left action “shifts things one entry to the right”. Also recall v is a
sink iff δv ∈ ker φ.
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ADDING TAILS TO GENERAL CORRESPONDENCES

Let X be a C ∗-correspondence over A with left action φ : A→ L(X ).
Define the tail of X to be the c0-direct sum T :=

⊕∞
i=1 ker φ.

Form a new C ∗-correspondence Y := X ⊕ T over B := A⊕ T with

(ξ, (f1, f2, . . .)) · (a, (g1, g2, . . .)) := (ξ · a, (f1g1, f2g2, . . .))

the inner product is given by

〈(ξ, (f1, f2, . . .)), (ν, (g1, g2, . . .))〉B := (〈ξ, ν〉A, (f ∗1 g1, f
∗
2 f2, . . .))

and left action φB : B → L(Y ) is

φB(a, (f1, f2, . . .))(ξ, (g1, g2, . . .)) := (φ(a)(ξ), (ag1, f1g2, f2g3, . . .))

Note: The left action φB on Y is injective. Thus OY is the algebra
defined by Pimsner (Katsura’s definition not needed).
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Add a tail to X to obtain a correspondence Y := X ⊕T over B := A⊕T .

Let (πY , tY ) be a universal JY -coisometric representation of Y . Then
(π, t) := (πY |A, tY |X ) is a JX -coisometric representation of X in OY .
Furthermore, ρ(π,t) : OX → C ∗(πX , tX ) ⊆ OY is an isomorphism onto the
C ∗-subalgebra of OY generated by

{πY (a,~0), tY (ξ,~0) : a ∈ A and ξ ∈ X}

and this C ∗-subalgebra is a full corner of OY .

X
tY |X

  
tX   B

BB
BB

BB
B

OX

ρ(π,t)
//______ OY

A
πY |A

??
πX

>>||||||||

Consequently, OX is naturally isomorphic to a full corner of OY .
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This result often allows one to restrict to the case when φ is injective and
then extend using Morita equivalence.

In particular, we can sometimes extend results proven for Pimsner’s
algebras to the algebras more generally defined by Katsura.

Example: Fowler, Muhly, and Raeburn proved the Gauge-Invariant
Uniqueness Theorem for Cuntz-Pimsner algebras of C ∗-correspondences
with φ injective.

Using the method of adding tails, we can extend the Gauge-Invariant
Uniqueness Theorem to Cuntz-Pimsner algebras of general
C ∗-correspondences.
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Another Example: If we let X be a C ∗-correspondence, and let (πX , tX ) be
a universal representation into TX , then the tensor algebra T +

X is defined
to be the norm-closed algebra generated by imπX ∪ im tX .

Muhly and Solel showed that if φ is injective, then the C ∗-envelope of T +
X

is OX .

Katsoulis and Kribs showed that by adding tails one can extend the
Muhly-Solel result, and prove that, in general, the the C ∗-envelope of T +

X
is OX .
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RELATIVE CUNTZ-PIMNSER ALGEBRAS

If X is a C ∗-correspondence over A, and K is an ideal in A with K ⊆ JX ,
then we may define the relative Cuntz-Pimsner algebra O(K ,X ) to be the
C ∗-algebra generated by a universal K -coisometric representation.
In other words, there exists a K -coisomteric representation (πK

X , t
K
X ) of X

into O(K ,X ) such that O(K ,X ) is generated by imπK
X ∪ im tK

X , and
whenever (π, t) is a K -coisometric representation of X into a C ∗-algebra
B, then there exists a ∗-homomorphism ρ(π,t) : O(K ,X )→ B making the
following diagram commute.

X t

��tK
X   B

BB
BB

BB
B

OX

ρ(π,t)
//______ B

A
π

@@
πK

X

>>||||||||

Note: O(JX ,X ) = OX and O({0},X ) = TX .
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In the graph setting, K ⊆ JX (E) implies K = span{δv : v ∈ V } for some
V ⊆ E 0

reg.

The relative Cuntz-Pimsner algebra is a relative graph C ∗-algebra,
C ∗(E ,V ), which is the universal C ∗-algebra generated by a collection of
partial isometries {se : e ∈ E 1} with commuting range projections together
with a collection of mutually orthogonal projections {pv : v ∈ E 0} that
satisfy

1 s∗e se = pr(e) for all e ∈ E 1

2 ses
∗
e ≤ ps(e) for all e ∈ E 1

3 pv =
∑

s(e)=v

ses
∗
e for all v ∈ V
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The relative graph C ∗-algebras and relative Cuntz-Pimnser algebras arise
naturally when describing subalgebras of graph algebras and when
describing quotients of graph algebras.

Katsura has shown that every relative Cuntz-Pimsner algebra is a
Cuntz-Pimsner algebra; i.e., given a relative Cuntz-Pimsner algebra
O(K ,X ) there exists a C ∗-correspondence Y such that O(K ,X ) ∼= OY .

For relative graph C ∗-algebra C ∗(E ,V ), there exists a graph F such that
C ∗(E ,V ) ∼= C ∗(F ). We may obtain F by “splitting’” vertices in E 0

reg \ V .
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