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We have seen we can compute K -theory for graph C ∗-algebras. Also, we
can use Elliott’s Theorem and the Kirchberg-Phillips Classification
Theorem to classify simple graph C ∗-algebras up to Morita equivalence
(i.e., stable isomorphism).

What about in the nonsimple case?

We will consider the 1-ideal case first.

Graph C ∗-algebras provide a good testing grounds for conjectures and
preliminary theories — they are simultaneously rich and tractable. All
simple graph C ∗-algebras are AF or purely infinite, so graph C ∗-algebras
with one ideal will be extensions of these two types. Thus we can have
“mixing” of different types, but the “mixing” is not as complicated as with
general C ∗-algebras.
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C∗(E) Properties of E

Unital finite number of vertices

Finite finite graph with no cycles
Dim.

(1) Every cycle has an exit
Simple (2) No saturated hereditary sets

Simple (1) Every cycle has an exit
and (2) No saturated hereditary sets

Purely (3) Every vertex can reach a cycle
Infinite

AF no cycles
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K -theory for Graph C ∗-algebras

Remark

Let E = (E 0,E 1, r , s) be a graph with no singular vertices, and let AE be
the E 0 × E 0 matrix AE (v ,w) := #{e ∈ E 1 : s(e) = v and r(e) = w}.
Then At

E − I : ZE0 → ZE0
and

K0(C ∗(E )) ∼= coker(At
E − I ) K1(C ∗(E )) ∼= ker(At

E − I )

Remark

If E has singular vertices, in the decomposition E 0 = E 0
reg ∪ E 0

sing we have

AE =

(
B C
∗ ∗

)
and

(
Bt − I

C t

)
: ZE0

reg → ZE0
.

Then

K0(C ∗(E )) ∼= coker

(
Bt − I

C t

)
K1(C ∗(E )) ∼= ker

(
Bt − I

C t

)
.
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Classification up to stable isomorphism

Theorem (Elliott)

Let A and B be AF C ∗-algebras. Then A⊗K ∼= B ⊗K if and only if

(K0(A),K0(A)+) ∼= (K0(B),K0(B)+)

Theorem (Kirchberg-Phillips)

Let A and B be Kirchberg algebras (purely infinite, simple, separable,
nuclear, and in the UCT class). Then A⊗K ∼= B ⊗K if and only if
K0(A) ∼= K0(B) and K1(A) ∼= K1(B).

Any simple graph C ∗-algebra is either AF (and classified by Elliott’s
Theorem) or purely infinite (and classified by the Kirchberg-Phillips
Theorem).
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What about classification in the nonsimple case?

Elliott’s theorem holds for nonsimple AF-algebras. (Recall: ideals and
quotients of AF-algebras are AF).

Meyer and Nest have proven that certain purely infinite C ∗-algebras are
classified by their filtrated K -theory. (All ideals and quotients are purely
infinite.)

Restorff has proven that nonsimple Cuntz-Krieger algebras satisfying
Condition (II) are classified by their filtrated K -theory. (All ideals and
quotients are purely infinite.)

Graph C ∗-algebras may have a mixture: ideals and quotients can be either
AF or purely infinite.
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Let A be a graph C ∗-algebra with a unique proper nontrivial ideal I .

e : 0 // I // A // A/I // 0

There are four cases:

Case I A/I

[11] AF AF
[1∞] AF Kirchberg
[∞1] Kirchberg AF

[∞∞] Kirchberg Kirchberg

There is a result of Eilers, Restorff, and Ruiz that deals with these mixed
cases.
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The Invariant

For an extension

e : 0 // I // A // A/I // 0

we let Ksix(e) denote the cyclic six-term exact sequence of K -groups

K0(I ) // K0(A) // K0(A/I )

��
K1(A/I )

OO

K1(A)oo K1(I )oo

where K0(I ), K0(A), and K0(A/I ) are viewed as ordered groups.
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e1 : 0 // I1 // A1
// A1/I1 // 0

e2 : 0 // I2 // A2
// A2/I2 // 0

Ksix(Ext1) ∼= Ksix(Ext2) if ∃ isomorphisms α, β, γ, δ, ε, and ζ with

K0(I1) //

α
&&NNNNNNNNNNN

K0(A1) //

β
��

K0(A1/I1)

��

γ
xxppppppppppp

K0(I2) // K0(A2) // K0(A2/I2)

��
K1(A2/I2)

OO

K1(A2)oo K1(I2)oo

K1(A1/I1)

OO

ζ
88ppppppppppp

K1(A1)oo

ε

OO

K1(I1)oo

δ
ffNNNNNNNNNNN

and where α, β, and γ are isomorphisms of ordered groups.
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Definition

We will be interested in classes C of separable nuclear unital simple
C ∗-algebras in the bootstrap category N satisfying the following
properties:

(I) Any element of C is either purely infinite or stably finite.

(II) C is closed under tensoring with Mn, where Mn is the C ∗-algebra of n
by n matrices over C.

(III) If A is in C, then any unital hereditary C ∗-subalgebra of A is in C.

(IV) For all A and B in C and for all x in KK (A,B) which induce an
isomorphism from (K+

∗ (A), [1A]) to (K+
∗ (A), [1B ]), there exists a

∗-isomorphism α : A→ B such that KK (α) = x .

Definition

If B is a separable stable C ∗-algebra, then we say that B has the corona
factorization property if every full projection in M(B) is Murray-von
Neumann equivalent to 1M(B).
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Theorem (Eilers, Restorff, Ruiz)

Let CI and CQ be classes of unital nuclear separable simple C ∗-algebras in
the bootstrap category N satisfying the Properties (I)–(IV) above. Let A1

and A2 be in CQ and let B1 and B2 be in CI with B1 ⊗K and B2 ⊗K
satisfying the corona factorization property. Let

e1 : 0 // B1 ⊗K // E1
// A1

// 0

e2 : 0 // B2 ⊗K // E2
// A2

// 0

be essential extensions with E1 and E2 unital. If Ksix(e1) ∼= Ksix(e2), then
E1 ⊗K ∼= E2 ⊗K.

Note: This does not apply immediately to graph C ∗-algebras. Graph
C ∗-algebras need not be unital, and their ideals need not be stable.
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But with some work, we can prove the following:

Theorem (Eilers and T)

If A is a graph C ∗-algebra with exactly one proper nontrivial ideal I , then
A classified up to stable isomorphism by the six-term exact sequence

K0(I ) // K0(A) // K0(A/I )

��
K1(A/I )

OO

K1(A)oo K1(I )oo

with all K0-groups considered as ordered groups. In other words, if

e1 : 0 // I // C ∗(E ) // C ∗(E )/I // 0

e2 : 0 // I ′ // C ∗(F ) // C ∗(F )/I ′ // 0

then C ∗(E )⊗K ∼= C ∗(F )⊗K if and only if Ksix(e1) ∼= Ksix(e2).
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Sketch of Proof
Let CI = CQ = union of simple AF-algebras and Kirchberg algebras

Cases: [1∞], [∞1], and [∞∞].
Given

e : 0 // I // C ∗(E ) // C ∗(E )/I // 0

we prove there exists a full projection p ∈ C ∗(E ) such that pIp is stable.
Since p is full, the vertical maps in

e ′ : 0 // pIp //
� _

��

pAp //
� _

��

pAp/pIp� _

��

// 0

e : 0 // I // A // A/I // 0

are full inclusions and Ksix(e) ∼= Ksix(e ′). Since pIp is stable, pIp = B ⊗K
for some B in our class. Thus e ′ has the appropriate form.

Case: [11]. Apply Elliott’s Theorem.
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In fact, we can prove slightly more in the [1∞] case.

Theorem

If A is a the C ∗-algebra of a graph satisfying Condition (K), and if A has a
largest proper ideal I such that I is an AF-algebra, then A is classified up
to stable isomorphism by the six-term exact sequence

K0(I ) // K0(A) // K0(A/I )

��
K1(A/I )

OO

K1(A)oo K1(I )oo

with K0(I ) considered as an ordered group.
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Examples

Consider the graph with one vertex

E •

n

��

and n edges.

Cases:
n = 0 C ∗(E ) ∼= C
n = 1 C ∗(E ) ∼= C (T)
1 < n <∞ C ∗(E ) ∼= On

n =∞ C ∗(E ) ∼= O∞

Stable isomorphism class determined uniquely by n.
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Examples

Consider the graph with two vertices

E •a
%% b

(( • d
yy

c
hh

with AE =

(
a b
c d

)
. (We’ll assume this graph satisfies Condition (K).)

We need to consider 5 cases and subcases.

Mark Tomforde (University of Houston) Non-Simple Classification July, 2010 16 / 27



Case I: b 6= 0 and c 6= 0

E •a
%% b

(( • d
yy

c
hh

In this case C ∗(E ) is simple and purely infinite and stable isomorphism

class is determined by K0(C ∗(E )) ∼= coker

(
Bt − I

C t

)
.
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Case II: a = 0, 1 ≤ b <∞, c = 0, d = 0,

E • b // •

In this case C ∗(E ) is simple and finite dimensional, and
C ∗(E ) ∼= Mb+1(C).

So each value of b gives a different isomorphism class, but they are all
stably isomorphic.
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Case III: 1 < a <∞, b =∞, c = 0

E •a
%% ∞ // • d

yy

In this case C ∗(E ) has ideal lattice A

I

J

{0}

and the stable isomorphism class is determined uniquely by a and d .
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Case IV: b = 0 and c = 0

E •a
%% • d

yy

In this case C ∗(E ) has ideal lattice

A

DD
DD

DD
DD

D

zz
zz

zz
zz

z

I

BB
BB

BB
BB J

{{
{{

{{
{{

{0}.

and C ∗(E ) ∼= Oa ⊕Od . The stable isomorphism class is determined
uniquely by a and d .
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Case V: E has one of the following forms

•a
%% b // • d

yy • ∞ // • d
yy •∞

%% ∞ // • d
yy

0 < a ≤ ∞
0 < b <∞

In this case C ∗(E ) has ideal lattice A

I

{0}

and by our theorem the stable isomorphism class is determined by Ksix(e).

Mark Tomforde (University of Houston) Non-Simple Classification July, 2010 21 / 27



a d b K0(I )→ K0(C ∗(E ))→ K0(C ∗(E )/I ) Case

0 0 ∞ Z++ → Z⊕ Z→ Z++ [11]

0 n ∞ Zd−1 → Zd−1 ⊕ Z→ Z++ [∞1]

0 ∞ ∞ Z± → Z⊕ Z→ Z++ [∞1]

n 0 n Z++ → coker(
[

b
a−1

]
)→ Za−1 [1∞]

n n n Zd−1 → coker(
[

d−1 b
0 a−1

]
)→ Za−1 [∞∞]

n ∞ n Z± → coker(
[

b
a−1

]
)→ Za−1 [∞∞]

∞ 0 n,∞ Z++ → Z⊕ Z→ Z± [1∞]

∞ n n,∞ Zd−1 → Zd−1 ⊕ Z→ Z± [∞∞]

∞ ∞ n,∞ Z± → Z⊕ Z→ Z± [∞∞]

“Z++” means Z with Z+ = N and “Z±” means Z ordered with Z+ = Z.
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We see that there are several stable isomorphism classes of C ∗-algebras of
graphs with two vertices.

In these cases there are many ideal lattices exhibited.

Also there are many examples of the four types [11], [1∞], [∞1], and
[∞∞].

This illustrates the need for our theorem in the classification of even basic
examples of graph C ∗-algebras, and it also illustrates the richness of graph
C ∗-algebras.
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How do we calculate the invariant?

We know how to compute the K -groups, but remember that the
homomorphisms are also part of the invariant.
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Theorem (Carlsen, Eilers, and T)

Let E be a row-finite graph with no sinks such that C ∗(E ) has a unique
proper, nontrivial ideal IH corresponding to a saturated hereditary subset
H. The with respect to E 0 = (E 0 \ H) t H, we have AE =

(
B X
0 C

)
.

Also the six-term exact sequence

K0(IH) // K0(C ∗(E )) // K0(C ∗(E )/IH)

��
K1(C ∗(E )/IH)

OO

K1(C ∗(E ))oo K1(IH)oo

is isomorphic to

coker(C t − I )
[x] 7→[ 0

x ]
// coker

(
Bt−I 0
X t C t−I

) [ a
b ]7→[a]

// coker(Bt − I )

0

��
ker(Bt − I )

[Xta]
↑
[a]

OO

ker
(

Bt−I 0
X t C t−I

)a← [( a
b )

oo ker(C t − I )
( 0

x )←[ x
oo
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Open Question: What is the range of this invariant?

For simple AF pieces, we know all simple Riesz groups are possible for K0

and we must have K1 zero.

For simple purely infinite pieces all K0 are possible and all free K1 are
possible.

The descending connecting map must be zero.

K0(IH) // K0(C ∗(E )) // K0(C ∗(E )/IH)

0
��

K1(C ∗(E )/IH)

OO

K1(C ∗(E ))oo K1(IH)oo

Are there any other obstructions?
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If we knew the range of the invariant, we could consider the question:

When is an extension of two simple graph C ∗-algebras a graph C ∗-algebra?

Note: Graph C ∗-algebras are not closed under extensions.
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