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Abstract

We examine a certain interval map, called the weather map, that has
been used by previous authors as a toy model for weather forecasting. We
prove that the weather map is topologically mixing and satisfies Devaney’s
definition of chaos.

1 Introduction

In the subject of dynamical systems there has been a great deal of progress
developing abstract theories that describe the behavior of systems satisfying
certain hypotheses, but relatively less development establishing that various
systems satisfy these hypotheses. As a result, in recent years there has been
a great deal of interest in examining particular examples of dynamical systems
and determining their properties.

An example that has attracted recent attention is a “Toy Forecast Model”
described in an article by Sadowski in the December 2012 issue of the American
Mathematical Monthly [7]. This model involves a function f : [0, 2] → [0, 2]
defined by

f(x) =

{
x+ 1 if 0 ≤ x ≤ 1

4− 2x if 1 < x ≤ 2
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and we shall refer to f as the weather map. The weather map was designed to
give a simplified example describing how weather can change from one day to
the next: a sunny day is labeled 0, a cloudy day is labeled 1, and a rainy day
is labeled 2. A number x ∈ [0, 2] is considered as a position on this spectrum
of sunny to rainy, and if x denotes today’s weather, then the weather for the
following days is given by the sequence f(x), f2(x), f3(x), . . ., where we define
fk+1(x) := f(fk(x)) for k ≥ 1. Such a model is, of course, not realistic, but
instead meant to provide a simplified deterministic model that can mimic sud-
den changes, similar to the changes that occur with daily weather. One can
see that x = 0 is periodic, with f(0) = 1, f(1) = 2, and f(2) = 0. In his
analysis in [7], Sadowski observed that when the initial weather is a dyadic
rational; i.e., x = a/2n ∈ [0, 2] for a ∈ N, then the weather would eventually
be equal to one of the values in {0, 1, 2}, and he colored the point x white,
grey, or black, depending on whether the first integer value obtained by fk(x)
was 0, 1, or 2, respectively. Sadowski showed that for every n ∈ N the numbers
0/2n, 1/2n, 2/2n, . . . , 2n+1/2n are colored in such a way that every three consec-
utive terms are of three different colors. This shows that the weather function
exhibits a sensitive dependence on initial conditions: it is possible to have days
of arbitrarily close weather that on some day in the future will produce days of
drastically different weather.

Our objective in this article is to provide a proof that the weather map
is topologically mixing and chaotic. While there is no universally accepted
definition of chaos, one very popular definition is due to Devaney. A map f :
X → X is chaotic in Devaney’s definition if all of the following three properties
hold: (1) f is topologically transitive, (2) the periodic points of f are dense in
X, and (3) f has sensitive dependence on initial conditions. It is known that in
many situations these conditions are not independent: If f is continuous and if
X is a metric space with no isolated points, then we have ((1) + (2)) =⇒ (3),
and if X is an interval of R, then we have topologically mixing =⇒ (1) =⇒
((2) + (3)). Thus in many situations, one only needs to establish a subset of the
desired properties.

In this paper we prove that the weather map is topologically mixing. Since
it is defined on an interval of R, this implies the weather map also satisfies
Devaney’s definition of chaos. However, rather than appeal to general theory
to obtain these properties, we give a completely self-contained treatment of all
the results needed. This allows readers of this paper to deduce the properties
asserted from first principles and to not only prove — but also understand why
— the weather map exhibits all three properties of Devaney’s definition. After
some preliminaries in Section 2, we describe the relationships among the three
conditions in Devaney’s definition of chaos in Section 3. In particular, we give
self-contained proofs of the fact that (1) + (2) =⇒ (3) when X is a metric
space with no isolated points, and that (1) =⇒ (2) when X is an interval
of R. These results are well known and we prove them by methods similar
to the existing literature; however, we write the proofs to be completely self-
contained and to have greater detail than what is in the literature; in particular,
we write them at a level that is accessible to the average undergraduate reader.
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In Section 4 we prove that the weather map is topologically mixing. This result
requires a careful consideration of cases: while the weather map is expanding
on [1, 2], it is isometric on [0, 1], and hence one must do a careful analysis of
how the weather maps causes the intervals [0, 1] and [1, 2] to interact. Once
we obtain that the weather map is topologically mixing, we apply our results
from Section 3 to conclude that the weather map satisfies all three conditions
of Devaney’s definition of chaos.

2 Preliminary Definitions and Notation

We denote the real numbers by R, the natural numbers by N, and mention that
N = {1, 2, . . .}; so, in particular, 0 is not a natural number. If (X, d) is a metric
space with metric d, then for any point p ∈ X we let Br(p) := {x ∈ X : d(p, x) <
r} denote the ball of radius r centered at p.

An interval is a subset of R of one of the following eight types:

[a, b] := {x ∈ R : a ≤ x ≤ b} [a,∞) := {x ∈ R : a ≤ x}
(a, b) := {x ∈ R : a < x < b} (a,∞) := {x ∈ R : a < x}
[a, b) := {x ∈ R : a ≤ x < b} (∞, b] := {x ∈ R : x ≤ b}
(a, b] := {x ∈ R : a < x ≤ b} (∞, b) := {x ∈ R : x < b}

where a, b ∈ R. The intervals of the form [a, b], (a, b), [a, b), and (a, b] are called
finite intervals, the intervals of the form [a, b], [a,∞), and (∞, b] are called closed
intervals, and the intervals of the form (a, b), (a,∞), and (∞, b) are called open
intervals.

Notice that intersections of intervals are intervals, and that a subset of R is
an interval if and only if it has the property that for any two real numbers in
the set all numbers between these two numbers are also in the set.

If X is a set and f : X → X, then we define f0 : X → X to be the
identity function on X, and for any k ∈ N we define fk : X → X recursively by
fk := f ◦fk−1. Note that f1 = f , and fk is the k-fold composition of f . For any
k ∈ N and any subset S ⊆ X, we also define f−k(S) = {x ∈ X : fk(x) ∈ S}.
Definition 1. Let X be a topological space and let f : X → X be a function.
We say that x ∈ X is periodic if fk(x) = x for some k ∈ N. In this case we say
x has period k, and the smallest value of k ∈ N for which fk(x) = x is called
the least period of x. If x ∈ X, the orbit of x under f is the set

O(x) := {x, f(x), f2(x), f3(x), . . .}.

One can see that x is a periodic point, then O(x) is a finite set of cardinality
equal to the least period of x, and each element of O(x) is also a periodic point.
It is also straightforward to show that if x and y are periodic points, then either
O(x) ∩O(y) = ∅ or O(x) = O(y).

Definition 2. If X is a topological space and f : X → X is a function, we say
f is topologically transitive if whenever U and V are nonempty open subsets of
X, there exists n ∈ N such that fn(U) ∩ V 6= ∅
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Definition 3. If X is a topological space and f : X → X is a function, we say
f is topologically mixing if whenever U and V are nonempty open subsets of
X, there exists a N ∈ N such that fn(U) ∩ V 6= ∅ for all n ≥ N .

Remark 1. It follows immediately from the definitions that topologically mixing
implies topologically transitive. However, the converse does not hold: an irra-
tional rotation of the circle is topologically transitive (the orbit of a small open
interval will eventually intersect any other small open interval), but not topolog-
ically mixing (a rotating small interval will typically leave another interval for
a while before returning).

Definition 4. If (X, d) is a metric space and f : X → X, we say f is sensitive
to initial conditions if there exists a δ > 0 such that, for any x ∈ X and
any open set U containing x, there exists a y ∈ U and an n ≥ 0 such that
d(fn(x), fn(y)) > δ.

Definition 5 (Devaney’s Definition of Chaos [4]). Let (X, d) be a metric space.
We say a function f : X → X is chaotic (or exhibits chaos) if the following
three conditions are satisfied:

(1) f is topologically transitive,

(2) the periodic points of f are dense in X, and

(3) f has sensitive dependence on initial conditions.

In many situations these three conditions are not independent, and we ex-
amine the relationships among them in the next section.

3 Relationships among the conditions in Devaney’s
Definition

In this section we describe various hypotheses under which one condition of
Definition 5 will follow from others.

3.1 Metric spaces without isolated points

We first prove that for a function on a metric space without isolated points,
topologically transitive and dense periodic points implies sensitive dependance
on initial conditions.

This result was first proven by Banks, Brooks, Cairns, Davis, and Stacey in
[1]. Our proofs of Lemma 1, Lemma 2, and Proposition 1 are very similar to
what is done in [1], but we strive to be more detailed in our presentation.

Lemma 1. Let (X, d) be a metric space with no isolated points, and let f :
X → X be a continuous function. If f is topologically transitive and the set of
periodic points of f is dense in X, then there exist periodic points p0, q0 ∈ X
such that O(p0) ∩O(q0) = ∅.
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Proof: Since the set of periodic points is dense in X, there exists a periodic
point p0 ∈ X. The fact p0 is periodic implies O(p0) is a finite set. Let r :=
min{d(p0, p) : p ∈ O(p0)}. Since X has no isolated points, and the periodic
points are dense in X, there exists a periodic point q0 ∈ Br(p0) with q0 6= p0.
Since Br(p0) ∩ O(p0) = {p0} we conclude that q0 /∈ O(p0). Thus q0 ∈ O(q0) \
O(p0), and O(q0) 6= O(p0). Since p0 and q0 are both periodic points, it follows
that O(p0) ∩O(q0) = ∅. QED

Lemma 2. Let (X, d) be a metric space, and let f : X → X be a continuous
function with the property that there exist periodic points p0, q0 ∈ X for f such
that O(p0) ∩ O(q0) = ∅. Then there exists ε0 > 0 such that for every x ∈ X
there is a periodic point p ∈ X with d(x, fn(p)) ≥ ε0 for all n ∈ N

Proof: Choose periodic points p0 and q0 such that O(p0) ∩ O(q0) = ∅.
Since p0 and q0 are periodic points, the orbits O(p0) and O(q0) are each finite
sets. Thus the set {d(x, y) : x ∈ O(p0) and y ∈ O(q0)} is finite, and we may
define

ε0 :=
1

2
min{d(x, y) : x ∈ O(p0) and y ∈ O(q0)}.

Let x ∈ X. If d(x, y) ≥ ε0 for all y ∈ O(q0), the claim holds for x by letting
p := q0. Otherwise, there exists y ∈ O(q0) such that d(x, y) < ε0, and for
all n ∈ N we have d(fn(p0), y) ≤ d(fn(p0), x) + d(x, y). Thus d(fn(p0), x) ≥
d(fn(p0), y)−d(x, y) ≥ 2ε0−ε0 = ε0 and the claim holds for x by letting p := p0.
QED

Proposition 1. Let (X, d) be a metric space with no isolated points, and let
f : X → X be a continuous function. If f is topologically transitive and the set
of periodic points of f is dense in X, then f has sensitive dependence on initial
conditions.

Proof: Lemma 1 and Lemma 2 imply that there exists ε0 > 0 such that
for every x ∈ X there is a periodic point p ∈ X such that d(x, fn(p)) ≥ ε0 for
all n ∈ N.

Let δ := ε0/4. We shall show that f is sensitive to initial conditions using
the value δ. Let x ∈ X and let U be an open subset of X with x ∈ U . Choose
ε > 0 small enough that ε < δ and Bε(x) ⊆ U . Since the periodic points of f
are dense, there exists a periodic point y ∈ Bε(x). Let us suppose y has period
k ∈ N. By the choice of ε0 there exists a periodic point p with d(x, fn(p)) ≥ ε0
for all n ∈ N. Let

V := {z ∈ X : d(f i(z), f i(p)) < ε for all 1 ≤ i ≤ k}.

It is straightforward to verify that V =
⋂k
i=1 f

−i(Bε(f
i(p))), and thus the con-

tinuity of f implies V is the finite intersection of open sets, and hence V is an
open set. Since Bε(x) and V are open sets, the fact f is topologically transitive
implies that there exists m ∈ N such that fm(Bε(x)) ∩ V 6= ∅. Hence there
exists z ∈ Bε(x) such that fm(z) ∈ V .
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Choose r ∈ N such that m/k < r ≤ m/k + 1. Then m < kr ≤ m + k and
0 < kr −m ≤ k. In particular, kr −m ∈ N and kr −m ≤ k. Thus we have

4ε = ε0

≤ d(x, fkr−m(p)) (by choice of p)

≤ d(x, y) + d(y, fkr(z)) + d(fkr(z), fkr−m(p)) (by triangle inequality)

≤ d(x, y) + d(y, fkr(z)) + d(fkr−m(fm(z)), fkr−m(p))

≤ d(x, y) + d(y, fkr(z)) + ε (since fm(z) ∈ V )

≤ d(x, y) + d(fkr(y), fkr(z)) + ε (since y has period k)

≤ ε+ d(fkr(y), fkr(z)) + ε (since y ∈ Bε(x))

and rearranging terms gives 2ε ≤ d(fkr(y), fkr(z)). Using the triangle inequal-
ity, we deduce

2ε < d(fkr(y), fkr(z)) ≤ d(fkr(y), x) + d(x, fkr(z)).

It follows that either d(fkr(y), x) ≥ ε or d(x, fkr(z)) ≥ ε. Since y ∈ Bε(x) ⊆ U
and z ∈ Bε(x) ⊆ U , we have established f has sensitive dependence on initial
conditions. QED

Remark 2. Suppose (X, d) is a metric space and f : X → X is a continuous
function that is topologically transitive and whose periodic points are dense. If
x ∈ X is an isolated point of X, then {x} is an open set, and the denseness of
periodic points implies that x is periodic. Moreover, in this case the fact f is
topologically transitive implies that X = O(x) is a finite set. Hence the hypothe-
sis that X has no isolated points in Proposition 1 is equivalent to requiring that
X is not a finite set.

Remark 3. An interesting aspect of Proposition 1 is that while topologically
transitive and having dense periodic points are both topological properties, they
are in this situation able to imply sensitive dependence on initial conditions,
which is a metric property. Thus whether or not f satisfies Devaney’s definition
of chaos depends only on the topology of X and not the metric.

3.2 Intervals of the real numbers

Next we prove that for a function on a (not necessarily closed and not necessarily
finite) interval of the real numbers, f topologically transitive implies that the
periodic points of f are dense in X. This result was first proven by Block and
Coppel [3, Lemma 41 of Chapter IV.5]. However, a highly simplified proof was
given by Vellekoop and Berglund in [8], and Vellekoop and Berglund’s proof
was adapted slightly in [5, Theorem 3.6]. In both [8] and [5] the result relies
on a lemma (our Lemma 4), however in both cases the lemma was proven
in a way that left out several details; there are multiple times in each proof
where the authors claim that various results may be obtained by repeating an
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argument similar to the one in their previous paragraphs with some obvious
modifications. Rather than make similar statements, we have found that we
can create an additional lemma (our Lemma 3) that may be applied repeatedly
in the proof of Lemma 3 to avoid these vague justifications. We also found
that by creating Lemma 5 we were able to give a slightly modified proof of the
result in Proposition 2 that makes the argument more clear. We believe that
our changes provide an easier to read and more transparent proof of the result
in Proposition 2.

Lemma 3. Let I be an interval of R. Let f : I → I be continuous, and let J ⊆ I
be an interval that contains no periodic points of f . If z ∈ J and f(z) ∈ J , then
either z < f(z) ≤ fk(z) for all k ∈ N or fk(z) ≤ f(z) < z for all k ∈ N.

Proof: Since J has no periodic points and z ∈ J , it follows that f(z) 6= z.
Hence either z < f(z) or f(z) < z. Let us first consider the case that z < f(z).
We shall prove that z < f(z) ≤ fk(z) for all k ∈ N by induction on k. For the
base case k = 1, we have fk(z) = f(z) and the claim holds trivially. For the
inductive step suppose that z < f(z) ≤ fk(z) for some k ∈ N. Define g : I → R
by g(x) := fk(x)−x. Then g(z) = fk(z)−z > 0 by the inductive hypothesis. If
it is the case that g(f(z)) ≤ 0, then the intermediate value theorem implies that
there exists c ∈ [z, f(z)] such that g(c) = 0, and hence fk(c) = c, contradicting
the fact that [z, f(z)] ⊆ J and there are no periodic points of f between z and
f(z). Hence we must have g(f(z)) > 0, and thus fk+1(z) > f(z). Therefor the
claim holds for k+ 1, and by the principle of mathematical induction, the claim
holds for all k ∈ N.

In the case that f(z) < z, a nearly identical induction argument can be used
to show that z > f(z) ≥ fk(z) for all k ∈ N. QED

Lemma 4. Let I be an interval of R. Let f : I → I be continuous, and let
J ⊆ I be an interval that contains no periodic points of f . If m,n ∈ N with
m < n, and z ∈ J is a point with fm(z) ∈ J and fn(z) ∈ J , then either
z < fm(z) < fn(z) or z > fm(z) > fn(z).

Proof: Since J contains no periodic points, it follows that fm(z) 6= z.
Hence either z < fm(z) or fm(z) < z. Let us first consider the case that
z < fm(z). Define g : I → R by g(x) := fm(x). Then z ∈ J , g(z) ∈ J , and
z < g(z), so it follows from Lemma 3 that z < g(z) ≤ gk(z) for all k ∈ N. Hence
z < fmk(z) for all k ∈ N. If we choose k := n − m, then z ≤ fm(n−m)(z).
We shall define h : I → R by h(x) = fn−m(x), and observe that the previous
sentence implies

z ≤ hm(z) (1)

For the sake of contradiction, let us suppose that fn(z) ≤ fm(z). Then
h(fm(z)) = f (n−m)(fm(z)) = fn(z) ≤ fm(z), and since fm(z) ∈ J and
h(fm(z)) = fn(z) ∈ J , it follows from Lemma 3 that hk(fm(z)) ≤ h(fm(z)) <
fm(z) for all k ∈ N. If we choose k := m, we obtain

hm(fm(z)) ≤ fm(z). (2)
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Define p : I → R by p(y) = hm(y) − y. Then (1) and (2) show that p(y)
is nonnegative at y = z and p(y) is nonpositive at y = fm(z). Thus by the
intermediate value theorem, there exists c ∈ [z, fm(z)] such that p(c) = 0. But
then hm(c) = c, and fm(n−m)(c) = hm(c) = c, which contradicts the fact that
[z, fm(z)] ⊆ J and there are no periodic points of f between z and fm(z).
Therefore, we must have fm(z) < fn(z) to avoid this contradiction, and we
have shown that z < fm(z) < fn(z).

In the case fm(z) < z, a similar argument as above shows that z > fm(z) >
fn(z).

QED

Lemma 5. Let X be a topological space, and let f : X → X be a continuous
function that is topologically transitive. If U and V are nonempty open subsets
of X, then for every N ∈ N there exists n > N such that fn(U) ∩ V 6= ∅.

Proof: It suffices to prove that if m ∈ N and fm(U) ∩ V 6= ∅, then there
exists n > m such that fn(U) ∩ V 6= ∅.

If fm(U) ∩ V 6= ∅, then since U ⊆ f−m(V ) and fm is continuous, we
may conclude that f−m(V ) is a nonempty open set. Since f is topologically
transitive, there exists k ∈ N such that fk(U) ∩ f−m(V ) 6= ∅. It follows that

∅ 6= fm(fk(U) ∩ f−m(V )) ⊆ fm(fk(U)) ∩ fm(f−m(V )) ⊆ fm+k(U) ∩ V

and hence if we let n := m+ k we have n > m and fn(U) ∩ V 6= ∅. QED

Proposition 2. Let I be an interval of R, and let f : I → I be continuous. If
f is transitive, then the set of periodic points of f is dense in I.

Proof: Suppose the set of periodic points of f is not dense in I. Then
there exists a nonempty open interval J ⊆ I such that J contains no periodic
points of f . Since J is an open interval, there exist at least two distinct points
in J , and hence we may choose nonempty open intervals U ⊆ J and V ⊆ J
with U ∩ V = ∅. Since f is topologically transitive, there exists m ∈ N such
that fm(U) ∩ V 6= ∅. Choose y ∈ U with fm(y) ∈ V . Since fm is continuous,
there exists an open interval W with y ∈W ⊆ U and fm(W ) ⊆ V . In addition,
since f is topologically transitive and W is a nonempty open set, Lemma 5
implies there exists n > m such that fn(W )∩W 6= ∅. Choose x ∈W such that
fn(x) ∈ W . Then 0 < m < n, and both fn(x) ∈ W and x ∈ W . However,
fm(x) ∈ fm(W ) ⊆ V , and hence fm(x) /∈ W . Since W is an interval, this
implies fm(x) is not between x and fn(x). Since x, fm(x), and fn(x) are all
elements of J , this contradicts Lemma 4. Thus the set of periodic points of f
is dense in I. QED

3.3 Summary of the relationships

Here we give a short description of the consequences of our results in this section.
If X is a topological space and f : X → X is continuous, we describe the
relationships among topologically mixing and the three properties of Devaney’s
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definition. We use the same numbering of properties as in Definition 5 for our
notation.

It follows from the definitions that we always have the implication

topologically mixing =⇒ (1)

and the example of irrational rotation of the circle shows the converse implica-
tion does not hold. The following two remarks contain situations in which we
have additional implications.

Remark 4 (Metric Spaces with No Isolated Points). If f : X → X is continuous
and X is a metric space with no isolated points, Proposition 1 shows

((1) and (2)) =⇒ (3).

Remark 5 (Intervals). If f : I → I is continuous and I is an interval of R,
then Proposition 2 and Proposition 1 show

topologically mixing =⇒ (1) =⇒ ((2) and (3)).

Remark 6 (Counterexamples). The following four examples show the converse
of the implications in Remark 4 and Remark 5 do not hold.

• Example 1: The identity function id : I → I is a continuous function on
an interval that satisfies (2) but not (3)

• Example 2: [8, p.355] gives an example of a continuous function f : I → I
on an interval that satisfies (3) but not (2).

• Example 3: [8, p.354] gives an example of a continuous function f : I → I
on an interval that satisfies (2) and (3), but not (1).

• Example 4: It is shown in [6, Theorem 6.1.2] that if I is a closed bounded
interval, then f : I → I is topologically mixing if and only if f2 : I → I
is topologically transitive. The function described in [2, Example 3] is
a continuous function f : I → I on an closed bounded interval I such
that f is topologically transitive, but f2 is not topologically transitive. In
particular, f is topologically transitive, but not topologically mixing.

Example 2 and Example 3 show that the converse of implication in Remark 4
does not hold, and moreover, that even when f is a continuous map on an
interval, (3) implies neither (2) nor (1). Example 3 shows that the converse
of the second implication in Remark 5 does not hold, and moreover, Example 1
and Example 2 show that neither of (2) or (3) implies the other in this case.
Finally, Example 4 shows that even when f is a continuous map on an interval,
(1) does not imply topological mixing.
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4 The Weather Map is Topologically Mixing and
Chaotic

Our goal in this section is to show the weather map is topologically mixing and
satisfies Devaney’s definition of chaos.

Definition 6. For an interval I ⊆ R, let m(I) denote the Lebesgue measure
(i.e., length) of I. In particular, if I is a finite interval, then m(I) is equal to
the difference of the right endpoint minus the left endpoint of I. Hence

m((a, b)) = m([a, b]) = m((a, b]) = m([a, b)) = b− a.

Lemma 6. Let f : [0, 2] → [0, 2] be the weather map, and let I ⊆ [0, 2] be an
interval. Then fn(I) is an interval for all n ∈ N, and there exists N ∈ N such
that m(fN (I)) ≥ min{2m(I), 2}. Moreover, we can always choose N ≤ 4.

Proof: Since the weather map f is continuous, fn is continuous for all
n ∈ N, and hence by the intermediate value theorem fn takes connected sets to
connected sets. Thus fn(I) is an interval for any interval I ⊆ [0, 2].

Let I be an interval, and suppose that a is the left endpoint of I and b is
the right endpoint of I. Then m(I) = b− a. Consider three cases.
Case I: b ≤ 1.

In this case I ⊆ [0, 1], and since f(x) = x + 1 for all x ∈ I, it follows that
f(I) is an interval with left endpoint a + 1 and right endpoint b + 1. Thus
f(I) ⊆ [1, 2]. Since f(x) = 4 − 2x for all x ∈ [1, 2], f2(I) = f(f(I)) is an
interval with left endpoint 2− 2b and right endpoint 2− 2a. Thus

m(f2(I)) = (2− 2a)− (2− 2b) = 2b− 2a = 2(b− a) = 2m(I) ≥ min{2m(I), 2}

and the claim holds with N := 2.

Case II: 1 ≤ a.
In this case I ⊆ [1, 2], and since f(x) = 4 − 2x for all x ∈ [1, 2], f(I)) is an

interval with left endpoint 4− 2b and right endpoint 4− 2a. Thus

m(f(I)) = (4− 2a)− (4− 2b) = 2b− 2a = 2(b− a) = 2m(I) ≥ min{2m(I), 2}

and the claim holds with N := 2.

Case III: a ≤ 1 and 1 ≤ b.
Since m(I) = b−a = (b−1)+(1−a), either b−1 ≥ m(I)/2 or 1−a ≥ m(I)/2.

Consider the following three subcases.

Subcase III(i): b− 1 ≥ m(I)/2.
Since b ≥ 1 and f(x) = 4−2x for all x ≥ 1, we see that f([1, b)) = (4−2b, 2].

If 4−2b < 1, then f(4−2b, 2] = [0, 2]. If 4−2b ≥ 1, then it follows from Case II
that

m(f2(4− 2b, 2]) ≥ min{2m((4− 2b, 2]), 2} = min{4b− 4, 2}.
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Thus in either situation, we have

m(f2(4− 2b, 2]) ≥ min{4b− 4, 2} = min{4(b− 1), 2}
≥ min{4(m(I)/2), 2} = min{2m(I), 2}

Hence

m(f3(I)) ≤ m(f3([1, b)) = m(f2((4− 2b, 2])) ≥ min{2m(I), 2}

and the claim holds with N := 3.

Subcase III(ii): 1− a ≥ m(I)/2 and 2− 2a > 1.
Since a ≤ 1 and f(x) = x+1 for all x ≤ 1, we have f((a, 1]) = (a+1, 2] with

a + 1 ≥ 1. Since f(x) = 4 − 2x for all x ≥ 1, we have f2((a, 1]) = [0, 2 − 2a).
Because 2− 2a ≥ 1 in this case, it follows that [0, 1] ⊆ f2((a, 1]) and hence

[0, 2] = f([1, 2]) = f2([0, 1]) ⊆ f2(f2(a, 1])) = f4((a, 1]) ⊆ f4(I)

so that
m(f4(I)) ≥ m([0, 2]) = 2 ≥ min{2m(I), 2}

and the claim holds with N := 4.

Subcase III(iii): 1− a ≥ m(I)/2 and 2− 2a < 1.
Since a ≤ 1 and f(x) = x+1 for all x ≤ 1, we have f((a, 1]) = (a+1, 2] with

a + 1 ≥ 1. Since f(x) = 4 − 2x for all x ≥ 1, we have f2((a, 1]) = [0, 2 − 2a).
Because 2− 2a ≤ 1 in this case, it follows from Case I that m(f2([0, 2− 2a))) ≥
min{2m([0, 2− 2a)), 2} = min{4− 4a, 2}. Hence

m(f4(I)) ≥ m(f4((a, 1])) = m(f2(f2((a, 1]))) = m(f2([0, 2− 2a)))

≥ min{4− 4a, 2} = 4− 4a = 4(1− a) ≥ 4(m(I)/2)

= 2m(I) ≥ min{2m(I), 2}

and the claim holds with N := 4. QED

Lemma 7. Let f : [0, 2] → [0, 2] be the weather map, and let I ⊆ [0, 2] be an
interval. Then fn(I) is an interval for all n ∈ N, and for every M ∈ N there
exists N ∈ N such that m(fN (I)) ≥ min{2Mm(I), 2}. Moreover, we can always
choose N ≤ 4M .

Proof: We proceed by induction on M . If M = 1, the result follows from
Lemma 6. For the inductive step, let M ∈ N and suppose the claim holds
for M − 1. Then there exists N ′ ∈ N with m(fN

′
(I)) ≥ min{2M−1m(I), 2}

and N ′ ≤ 4(M − 1). Applying Lemma 6 to the interval fN
′
(I), there exists

N ′′ ∈ N with m(fN
′′
(fN

′
(I))) ≥ min{2 · 2M−1m(I), 2} and N ′′ ≤ 4. If we let

N := N ′+N ′′, then m(fN (I)) ≥ min{2 · 2M−1m(I), 2} = min{2Mm(I), 2} and
N = N ′ +N ′′ ≤ 4(M − 1) + 4 = 4M . QED

Lemma 8. If U is a nonempty open subset of [0, 2], and m := m(U), then there
exists N ∈ N such that (0, 2) ⊆ fN (U). Moreover, if U contains an interval I
with m(I) > 0, then we may choose N ≤ 4 log2(2/m(I)) + 4.
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Proof: Since U is a nonempty open subset, then exists a nonempty open
interval I = (a, b) with I ⊆ U . Since m(I) > 0, we may choose a natural number
M such that log2(2/m(I)) ≤M < log2(2/m(I)) + 1. By Lemma 7 there exists
N ≤ 4M such that fN (I) is an interval and m(fN (I)) ≥ min{2Mm(I), 2}.
However,

2Mm(I) ≥ 2log2(2/m(I))m(I) = (2/m(I))m(I) = 2

so m(fN (I)) = 2. Since fN (I) is an interval contained in [0, 2] with length 2,
it follows that (0, 2) ⊆ fN (I). Since I ⊆ U , we have (0, 2) ⊆ fN (I) ⊆ fN (U).
Moreover, N ≤ 4M < 4(log2(2/m(I)) + 1) = 4 log2(2/m(I)) + 4. QED

Theorem 7. If f : [0, 2] → [0, 2] is the weather map, then f is topologically
mixing and f satisfies the three properties in Devaney’s definition of chaos (see
Definition 5).

Proof: If U is a nonempty open set, it follows from Lemma 8 that there
exists N ∈ N such that (0, 2) ⊆ fN (U). Thus (0, 2) ⊆ fn(U) for all n ≥ N ,
and fn(U) intersects every nonempty open subset of [0, 2] nontrivially. Thus
f is topologically mixing. It follows that f is also topologically transitive, and
Proposition 2 and Proposition 1 imply that f satisfies the three properties in
Devaney’s definition of chaos (cf. Remark 5). QED
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